cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A013631 Continued fraction for zeta(3).

Original entry on oeis.org

1, 4, 1, 18, 1, 1, 1, 4, 1, 9, 9, 2, 1, 1, 1, 2, 7, 1, 1, 7, 11, 1, 1, 1, 3, 1, 6, 1, 30, 1, 4, 1, 1, 4, 1, 3, 1, 2, 7, 1, 3, 1, 2, 2, 1, 16, 1, 1, 3, 3, 1, 2, 2, 1, 6, 1, 1, 1, 6, 1, 1, 4, 428, 5, 1, 1, 3, 1, 1, 11, 2, 4, 4, 5, 4, 1, 5, 14, 1, 3, 1, 2, 19, 1, 2, 5, 1, 7, 1, 1, 1, 1, 1, 57, 3, 2, 14, 2
Offset: 0

Views

Author

N. J. A. Sloane, John Morrison (John.Morrison(AT)armltd.co.uk)

Keywords

Examples

			zeta(3) = 1.2020569031595942... = 1 + 1/(4 + 1/(1 + 1/(18 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 20 2009
		

Crossrefs

Cf. A002117 (decimal expansion), A078984, A078985 (convergents).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[ Zeta[3], 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(zeta(3)); for (n=1, 20000, write("b013631.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 20 2009

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024

A013679 Continued fraction for zeta(2) = Pi^2/6.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 4, 7, 1, 4, 2, 3, 4, 10, 1, 2, 1, 1, 1, 15, 1, 3, 6, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 3, 1, 1, 5, 1, 2, 2, 1, 1, 6, 27, 20, 3, 97, 105, 1, 1, 1, 1, 1, 45, 2, 8, 19, 1, 4, 1, 1, 3, 1, 2, 1, 1, 1, 5, 1, 1, 2, 3, 6, 1, 1, 1, 2, 1, 5, 1, 1, 2, 9, 5, 3, 2, 1, 1, 1
Offset: 0

Views

Author

Keywords

Examples

			1.644934066848226436472415166... = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(4 + ...))))
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 23.

Crossrefs

Cf. A013661 (decimal expansion).
Cf. continued fractions for zeta(3)-zeta(20): A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[ Pi^2/6, 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^2/6); for (n=1, 20000, write("b013679.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 29 2009

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024

A013680 Continued fraction for zeta(4).

Original entry on oeis.org

1, 12, 6, 1, 3, 1, 4, 183, 1, 1, 2, 1, 3, 1, 1, 5, 4, 2, 7, 23, 1, 1, 1, 1, 3, 2, 4, 2, 2, 22, 1, 13, 5, 1, 4, 2, 1, 3, 1, 1, 1, 6, 11, 40, 1, 7, 5, 2, 4, 1, 2, 3, 14, 9, 1, 33, 78, 1, 12, 4, 1, 2, 551, 1, 1, 1, 1, 1, 1, 2, 1, 9, 2, 7, 3, 1, 3, 2, 15, 1, 1, 2, 2
Offset: 0

Views

Author

Keywords

Examples

			zeta(4) = 1 + 1/(12 + 1/(6 + 1/(1 + 1/(3 + ...)))). - _Harry J. Smith_, Apr 29 2009
		

Crossrefs

Cf. A013662 (zeta(4)). - Harry J. Smith, Apr 29 2009
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013681-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[4],80] (* Harvey P. Dale, Oct 13 2013 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^4/90); for (n=1, 20000, write("b013680.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 29 2009

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024

A013681 Continued fraction for zeta(5).

Original entry on oeis.org

1, 27, 12, 1, 1, 15, 1, 5, 1, 2, 19, 1, 1, 32, 1, 13, 1, 1, 1, 3, 1, 3, 2, 16, 1, 12, 4, 1, 5, 1, 1, 1, 1, 1, 2, 2, 6, 1, 8, 8, 6, 2, 3, 2, 2, 1, 30, 1, 17, 116, 1, 7, 1, 1, 1, 1, 1, 1, 2, 2, 12, 1, 4, 1, 1, 94, 1, 1, 3, 3, 6, 6, 1, 1, 2, 1, 17, 1, 1, 7, 1, 1, 11
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013663 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[5],80] (* Harvey P. Dale, Nov 30 2012 *)

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024

A013682 Continued fraction for zeta(6).

Original entry on oeis.org

1, 57, 1, 1, 1, 15, 1, 6, 3, 61, 1, 5, 3, 1, 6, 1, 3, 3, 6, 1, 10, 1, 3, 2, 1, 4, 1, 1, 5, 1, 61, 1, 3, 1, 2, 1, 3, 2, 1, 3, 1, 2, 2, 28, 1, 2, 18, 53, 2, 1, 17, 11, 3, 4, 3, 5, 2, 1, 27, 9, 8, 3, 3, 3, 9, 5, 1, 3, 29, 1, 4, 1, 2, 40, 4, 8, 1, 3, 1, 2, 2, 1, 4
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013664 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[6],100] (* Harvey P. Dale, Jul 19 2019 *)

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024

A013683 Continued fraction for zeta(7).

Original entry on oeis.org

1, 119, 1, 3, 2, 1, 2, 1, 39, 2, 3, 12, 3, 1, 1, 1, 2, 6, 5, 1, 5, 1, 2, 1, 23, 2, 1, 5, 34, 2, 1, 1, 3, 47, 2, 1, 8, 16, 1, 4, 1, 2, 1, 1, 1, 10, 72, 1, 1, 1, 1, 1, 2, 3, 13, 1, 2, 1, 5, 1, 27, 2, 9283, 1, 36, 1, 1, 1, 1, 3, 3, 23, 27, 5, 2, 4, 1, 3, 16, 1, 4
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013665 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[7],100] (* Harvey P. Dale, Sep 13 2020 *)

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024

A013684 Continued fraction for zeta(8).

Original entry on oeis.org

1, 245, 3, 1, 8, 4, 2, 3, 2, 1, 1, 4, 1, 3, 12, 2, 2, 34, 1, 1, 1, 1, 4, 9, 1, 56, 3, 38, 1, 1, 6, 1, 1, 1, 1, 3, 2, 1, 1, 5, 9, 3, 1, 11, 2, 3, 1, 5, 2, 2, 1, 4, 1, 27, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 72, 17, 1, 36, 1, 5, 6, 1, 4, 10, 1, 4, 1, 4, 1, 1, 1, 8
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013666 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[8],80] (* Harvey P. Dale, Aug 14 2020 *)

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024

A013685 Continued fraction for zeta(9).

Original entry on oeis.org

1, 497, 1, 10, 5, 1, 1, 8, 3, 2, 2, 1, 2, 1, 2, 5, 4, 2, 49, 1, 3, 3, 1, 1, 2, 1, 2, 30, 4, 1, 17, 3, 8, 2, 1, 2, 1, 1, 10, 6, 9, 2, 3, 1, 22, 1, 2, 1, 1, 2, 1, 1, 2, 18, 1, 1, 1, 9, 1, 2, 9, 1, 5, 2, 4, 1, 5, 1, 2, 2, 2, 6, 1, 8, 1, 5, 1, 4, 1483, 1, 3, 1, 2, 7
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013667 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[9],100] (* Harvey P. Dale, Aug 05 2023 *)

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024

A013695 Continued fraction for zeta(19).

Original entry on oeis.org

1, 524050, 1, 1, 2, 3, 1, 1, 1, 1, 3, 1, 2, 5, 14, 1, 5, 1, 3, 1, 3, 1, 3, 2, 1, 1, 1, 4, 1, 9, 1, 2, 1, 6, 2, 1, 1, 1, 76, 85, 1, 8, 1, 1, 7, 12, 7, 2, 1, 2, 4, 1, 3, 1, 22, 1, 3, 6, 1, 1, 1, 1, 1, 4, 1, 11, 1, 3, 1, 2, 1, 6, 1, 9, 1, 2
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013677 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[19], 100] (* Paolo Xausa, Jul 03 2024 *)

Extensions

Offset changed by Andrew Howroyd, Aug 10 2024

A013686 Continued fraction for zeta(10).

Original entry on oeis.org

1, 1005, 2, 4, 1, 98, 7, 11, 2, 1, 1, 6, 2, 3, 28, 1, 37, 1, 2, 7, 9, 13, 85, 4, 3, 34, 5, 3, 7, 4, 7, 1, 3, 2, 1, 22, 1, 1, 1, 1, 3, 15, 1, 9, 12, 1, 3, 3, 3, 1, 3, 2, 1, 2, 1, 1, 2, 10, 8, 2, 2, 11, 54, 4, 5, 1, 2, 2, 1, 3, 2, 1, 19, 4, 5, 1, 2, 2, 7, 1, 200
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013668 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[10], 100] (* Paolo Xausa, Jul 03 2024 *)

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024
Showing 1-10 of 18 results. Next