A013730 a(n) = 2^(3*n+1).
2, 16, 128, 1024, 8192, 65536, 524288, 4194304, 33554432, 268435456, 2147483648, 17179869184, 137438953472, 1099511627776, 8796093022208, 70368744177664, 562949953421312, 4503599627370496, 36028797018963968, 288230376151711744, 2305843009213693952, 18446744073709551616
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (8).
- Index to divisibility sequences.
Programs
-
Magma
[2^(3*n+1): n in [0..30]]; // Vincenzo Librandi, May 04 2011
-
Maple
seq(2^(3*n+1),n=0..19); # Nathaniel Johnston, Jun 26 2011
-
Mathematica
Table[2^n, {n, 1, 100, 3}] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *) 2^(3 Range[0, 40] + 1) (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *) Table[2^(3 n + 1), {n, 0, 20}] (* Eric W. Weisstein, Nov 03 2024 *) 2^(3 Range[0, 20] + 1) (* Eric W. Weisstein, Nov 03 2024 *) 2^Range[1, 61, 3] (* Eric W. Weisstein, Nov 03 2024 *) LinearRecurrence[{8}, {2}, 20] (* Eric W. Weisstein, Nov 03 2024 *) CoefficientList[Series[2/(1 - 8 x), {x, 0, 20}], x] (* Eric W. Weisstein, Nov 03 2024 *)
-
PARI
a(n)=2<<(3*n) \\ Charles R Greathouse IV, Jun 14 2011
Formula
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 8*a(n-1), n > 0; a(0)=2.
G.f.: 2/(1-8x). (End)
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} (-1)^n/a(n) = 4/9.
Product_{n>=0} (1 - 1/a(n)) = A132024. (End)
E.g.f.: 2*exp(8*x). - Stefano Spezia, May 29 2024
Comments