cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A016921 a(n) = 6*n + 1.

Original entry on oeis.org

1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325, 331
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 22 ).
Also solutions to 2^x + 3^x == 5 (mod 7). - Cino Hilliard, May 10 2003
Except for 1, exponents n > 1 such that x^n - x^2 - 1 is reducible. - N. J. A. Sloane, Jul 19 2005
Let M(n) be the n X n matrix m(i,j) = min(i,j); then the trace of M(n)^(-2) is a(n-1) = 6*n - 5. - Benoit Cloitre, Feb 09 2006
If Y is a 3-subset of an (2n+1)-set X then, for n >= 3, a(n-1) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
All composite terms belong to A269345 as shown in there. - Waldemar Puszkarz, Apr 13 2016
First differences of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
For b(n) = A103221(n) one has b(a(n)-1) = b(a(n)+1) = b(a(n)+2) = b(a(n)+3) = b(a(n)+4) = n+1 but b(a(n)) = n. So-called "dips" in A103221. See the Avner and Gross remark on p. 178. - Wolfdieter Lang, Sep 16 2016
A (n+1,n) pebbling move involves removing n + 1 pebbles from a vertex in a simple graph and placing n pebbles on an adjacent vertex. A two-player impartial (n+1,n) pebbling game involves two players alternating (n+1,n) pebbling moves. The first player unable to make a move loses. The sequence a(n) is also the minimum number of pebbles such that any assignment of those pebbles on a complete graph with 3 vertices is a next-player winning game in the two player impartial (k+1,k) pebbling game. These games are represented by A347637(3,n). - Joe Miller, Oct 18 2021
Interleaving of A017533 and A017605. - Leo Tavares, Nov 16 2021

Examples

			From _Ilya Gutkovskiy_, Apr 15 2016: (Start)
Illustration of initial terms:
                      o
                    o o o
              o     o o o
            o o o   o o o
      o     o o o   o o o
    o o o   o o o   o o o
o   o o o   o o o   o o o
n=0  n=1     n=2     n=3
(End)
		

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.

Crossrefs

Cf. A093563 ((6, 1) Pascal, column m=1).
a(n) = A007310(2*(n+1)); complement of A016969 with respect to A007310.
Cf. A287326 (second column).

Programs

Formula

a(n) = 6*n + 1, n >= 0 (see the name).
G.f.: (1+5*x)/(1-x)^2.
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A013730(n). - Reinhard Zumkeller, Feb 24 2009
a(n) = 4*(3*n-1) - a(n-1) (with a(0)=1). - Vincenzo Librandi, Nov 20 2010
E.g.f.: (1 + 6*x)*exp(x). - G. C. Greubel, Sep 18 2019
a(n) = A003215(n) - 6*A000217(n-1). See Hexagonal Lines illustration. - Leo Tavares, Sep 10 2021
From Leo Tavares, Oct 27 2021: (Start)
a(n) = 6*A001477(n-1) + 7
a(n) = A016813(n) + 2*A001477(n)
a(n) = A017605(n-1) + A008588(n-1)
a(n) = A016933(n) - 1
a(n) = A008588(n) + 1. (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/6 + sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021

A001018 Powers of 8: a(n) = 8^n.

Original entry on oeis.org

1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728, 1073741824, 8589934592, 68719476736, 549755813888, 4398046511104, 35184372088832, 281474976710656, 2251799813685248, 18014398509481984, 144115188075855872, 1152921504606846976, 9223372036854775808, 73786976294838206464, 590295810358705651712, 4722366482869645213696
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 8), L(1, 8), P(1, 8), T(1, 8). Essentially same as Pisot sequences E(8, 64), L(8, 64), P(8, 64), T(8, 64). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1..2n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1..2n} -> {1,2,3} such that for fixed y_1,y_2,...,y_n in {1,2,3} we have f(X_i)<>{y_i}, (i=1..n). - Milan Janjic, May 24 2007
This is the auto-convolution (convolution square) of A059304. - R. J. Mathar, May 25 2009
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 8-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
a(n) is equal to the determinant of a 3 X 3 matrix with rows 2^(n+2), 2^(n+1), 2^n; 2^(n+3), 2^(n+4), 2(n+3); 2^n, 2^(n+1), 2^(n+2) when it is divided by 144. - J. M. Bergot, May 07 2014
a(n) gives the number of small squares in the n-th iteration of the Sierpinski carpet fractal. Equivalently, the number of vertices in the n-Sierpinski carpet graph. - Allan Bickle, Nov 27 2022

Examples

			For n=1, the 1st order Sierpinski carpet graph is an 8-cycle.
		

References

  • K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2017; p. 15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001019 (powers of 9), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49), A165800 (powers of 50), A159991 (powers of 60).
Cf. A032766 (floor(3*n/2)).
Cf. A271939 (number of edges in the n-Sierpinski carpet graph).

Programs

Formula

a(n) = 8^n.
a(0) = 1; a(n) = 8*a(n-1) for n > 0.
G.f.: 1/(1-8*x).
E.g.f.: exp(8*x).
Sum_{n>=0} 1/a(n) = 8/7. - Gary W. Adamson, Aug 29 2008
a(n) = A157176(A008588(n)); a(n+1) = A157176(A016969(n)). - Reinhard Zumkeller, Feb 24 2009
From Stefano Spezia, Dec 28 2021: (Start)
a(n) = (-1)^n*(1 + sqrt(-3))^(3*n) (see Nunn, p. 9).
a(n) = (-1)^n*Sum_{k=0..floor(3*n/2)} (-3)^k*binomial(3*n, 2*k) (see Nunn, p. 9). (End)

A016933 a(n) = 6*n + 2.

Original entry on oeis.org

2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, 212, 218, 224, 230, 236, 242, 248, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314, 320, 326
Offset: 0

Views

Author

Keywords

Comments

Number of 3 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitaev, Nov 11 2004
Exponents n>1 for which 1 - x + x^n is reducible. - Ron Knott, Oct 13 2016
For the Collatz problem, these are the descenders' values that require division by 2. - Fred Daniel Kline, Jan 19 2017
For n > 3, also the number of (not necessarily maximal) cliques in the n-helm graph. - Eric W. Weisstein, Nov 29 2017

Crossrefs

Programs

Formula

A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A013730(n). - Reinhard Zumkeller, Feb 24 2009
A089911(2*a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
a(n) = 2*(6*n-1) - a(n-1) (with a(0)=2). - Vincenzo Librandi, Nov 20 2010
G.f.: 2*(1+2*x)/(1-x)^2. - Colin Barker, Jan 08 2012
a(n) = (3 * A016813(n) + 1) / 2.- Fred Daniel Kline, Jan 20 2017
a(n) = A016789(A005843(n)). - Felix Fröhlich, Jan 20 2017
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/18 + log(2)/6. - Amiram Eldar, Dec 10 2021
a(n) = 2 * A016777(n). - Alois P. Heinz, Dec 27 2023
From Elmo R. Oliveira, Mar 08 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
E.g.f.: 2*exp(x)*(1 + 3*x). (End)

A039771 Numbers k such that phi(k) is a perfect cube.

Original entry on oeis.org

1, 2, 15, 16, 20, 24, 30, 85, 128, 136, 160, 170, 192, 204, 240, 247, 259, 327, 333, 351, 399, 405, 436, 494, 518, 532, 648, 654, 666, 684, 702, 756, 771, 798, 810, 1024, 1028, 1088, 1111, 1255, 1280, 1360, 1375, 1536, 1542, 1632, 1843, 1853, 1875, 1920, 2008
Offset: 1

Views

Author

Keywords

Comments

a(n) is prime only for a(2)=2, for other cases: eulerphi(p) = p-1 = n^3, and p = 1 + n^3 = (n+1)(n^2-n+1), so p cannot be a prime. - Enrique Pérez Herrero, Aug 29 2010
A013730 is a subsequence. - Enrique Pérez Herrero, Aug 29 2010

Examples

			phi(247) = 216 = 6*6*6.
		

Crossrefs

Programs

  • Maple
    q:= n-> (c-> iroot(c, 3)^3=c)(numtheory[phi](n)):
    select(q, [$1..2200])[];  # Alois P. Heinz, Sep 01 2025
  • Mathematica
    Select[ Range[ 2000 ], IntegerQ[ Power[ EulerPhi[ # ], 1/3 ] ]& ]
  • PARI
    for(n=1,1e4,if(ispower(eulerphi(n),3),print1(n", "))) \\ Charles R Greathouse IV, Jul 31 2011

A013731 a(n) = 2^(3*n+2).

Original entry on oeis.org

4, 32, 256, 2048, 16384, 131072, 1048576, 8388608, 67108864, 536870912, 4294967296, 34359738368, 274877906944, 2199023255552, 17592186044416, 140737488355328, 1125899906842624, 9007199254740992, 72057594037927936, 576460752303423488, 4611686018427387904
Offset: 0

Views

Author

Keywords

Comments

Starting rank of the (j-1)-Washtenaw series for the fixed ratio 2^(-j-1) (see Griess). - J. Taylor (jt_cpp(AT)yahoo.com), Apr 03 2004
1/4 + 1/32 + 1/256 + 1/2048 + ... = 2/7. - Gary W. Adamson, Aug 29 2008
Independence number of the (n+1)-Sierpinski carpet graph. - Eric W. Weisstein, Sep 06 2017
Clique covering number of the (n+1)-Sierpinski carpet graph. - Eric W. Weisstein, Apr 22 2019

Crossrefs

Cf. A092811 (same sequence with 1 prepended).

Programs

  • Magma
    [2^(3*n+2): n in [0..20]]; // Vincenzo Librandi, Jun 26 2011
    
  • Maple
    seq(2^(3*n+2),n=0..19); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    (* Start from Eric W. Weisstein, Sep 06 2017 *)
    Table[2^(3 n + 2), {n, 0, 20}]
    2^(3 Range[0, 20] + 2)
    LinearRecurrence[{8}, {4}, 20]
    CoefficientList[Series[-(4/(-1 + 8 x)), {x, 0, 20}], x]
    (* End *)
  • PARI
    a(n)=4<<(3*n) \\ Charles R Greathouse IV, Apr 07 2012
  • Sage
    [lucas_number1(3*n, 2, 0) for n in range(1, 20)] # Zerinvary Lajos, Oct 27 2009
    

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 8*a(n-1), n > 0; a(0)=4.
G.f.: 4/(1-8x). (End)
a(n) = A198852(n) + 1. - Michel Marcus, Aug 23 2013
a(n) = A092811(n+1). - Eric W. Weisstein, Sep 06 2017
a(n) = 4*A001018(n). - R. J. Mathar, May 21 2024
E.g.f.: 4*exp(8*x). - Stefano Spezia, May 29 2024

A157176 a(n+1) = a(n - n mod 2) + a(n - n mod 3), a(0) = 1.

Original entry on oeis.org

1, 2, 2, 3, 5, 8, 8, 16, 16, 24, 40, 64, 64, 128, 128, 192, 320, 512, 512, 1024, 1024, 1536, 2560, 4096, 4096, 8192, 8192, 12288, 20480, 32768, 32768, 65536, 65536, 98304, 163840, 262144, 262144, 524288, 524288, 786432, 1310720, 2097152, 2097152, 4194304, 4194304
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 24 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,8},{1, 2, 2, 3, 5, 8},45] (* Stefano Spezia, May 29 2024 *)

Formula

a(n+6) = 8*a(n).
a(6*k) = 8^k; a(A008588(n))=A001018(n);
a(6*k+1) = a(6*k+2) = 2*8^k; a(A016921(n))=a(A016933(n))=A013730(n);
a(6*k+3) = 3*8^k; a(A016945(n))=A103333(n+1);
a(6*k+4) = 5*8^k; a(A016957(n))=A067412(n+1);
a(6*k+5) = 8^(k+1); a(A016969(n))=A001018(n+1).
G.f.: (1 + 2*x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5)/((1 - 2*x^2)*(1 + 2*x^2 + 4*x^4)). - Stefano Spezia, May 29 2024

Extensions

a(43)-a(44) from Stefano Spezia, May 29 2024

A013732 a(n) = 3^(3*n + 1).

Original entry on oeis.org

3, 81, 2187, 59049, 1594323, 43046721, 1162261467, 31381059609, 847288609443, 22876792454961, 617673396283947, 16677181699666569, 450283905890997363, 12157665459056928801, 328256967394537077627, 8862938119652501095929
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
a(n) = 27*a(n-1); a(0)=3.
G.f.: 3/(1-27*x). (End)

A132024 Decimal expansion of Product_{k>=0} (1-1/(2*8^k)).

Original entry on oeis.org

4, 6, 4, 5, 6, 8, 8, 8, 3, 6, 8, 6, 4, 7, 6, 3, 9, 0, 9, 8, 1, 9, 5, 9, 5, 6, 9, 7, 4, 8, 4, 7, 8, 0, 1, 0, 8, 7, 0, 0, 5, 8, 5, 1, 5, 4, 9, 5, 1, 2, 3, 0, 6, 5, 5, 6, 6, 0, 8, 5, 6, 0, 5, 9, 7, 0, 6, 0, 9, 9, 5, 7, 6, 2, 7, 4, 4, 1, 5, 4, 3, 8, 4, 8, 7, 8, 8, 8, 1, 2, 5, 0, 7, 6, 2, 1, 9, 4, 7, 0, 8, 1, 7
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.46456888368647639098...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[1/2,1/8],10,120][[1]] (* Harvey P. Dale, May 23 2011 *)
  • PARI
    prodinf(k=0, 1 - 1/(2*8^k)) \\ Amiram Eldar, May 09 2023

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_8(n))} floor(n/8^k)*8^k/n.
Equals lim inf_{n->oo} A132032(n)/n^(1+floor(log_8(n)))*8^(1/2*(1+floor(log_8(n)))*floor(log_8(n))).
Equals lim inf_{n->oo} A132032(n)/n^(1+floor(log_8(n)))*8^A000217(floor(log_8(n))).
Equals (1/2)*exp(-Sum_{n>0} 8^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132032(n)/A132032(n+1).
Equals Product_{n>=0} (1 - 1/A013730(n)). - Amiram Eldar, May 09 2023

Extensions

Name corrected by Amiram Eldar, May 09 2023

A013746 a(n) = 10^(3*n + 1).

Original entry on oeis.org

10, 10000, 10000000, 10000000000, 10000000000000, 10000000000000000, 10000000000000000000, 10000000000000000000000, 10000000000000000000000000, 10000000000000000000000000000, 10000000000000000000000000000000, 10000000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A011557 (10^n).

Programs

Formula

From Philippe Deléham, Nov 30 2008: (Start)
a(n) = 1000*a(n-1); a(0)=10.
G.f.: 10/(1-1000*x). (End)
From Elmo R. Oliveira, Jul 07 2025: (Start)
E.g.f.: 10*exp(1000*x).
a(n) = A013747(n)/10 = A013730(n)*A013736(n) = A011557(A016777(n)). (End)

A359987 Number of edge cuts in the n-ladder graph P_2 X P_n.

Original entry on oeis.org

1, 11, 105, 919, 7713, 63351, 514321, 4148839, 33347041, 267489431, 2143168305, 17160184519, 137349160833, 1099102033911, 8794224638161, 70360221445159, 562911076526881, 4503422288363351, 36027988077717105, 288226686123491719, 2305826176955087553, 18446667292472959671
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2023

Keywords

Crossrefs

Row 2 of A359990.
Cf. A013730, A107839, A356828 (vertex cuts), A359989.

Programs

  • Mathematica
    LinearRecurrence[{13, -42, 16}, {1, 11, 105}, 25] (* Paolo Xausa, Jun 24 2024 *)
    Table[2^(3 n - 2) + (((5 - Sqrt[17])/2)^n - ((5 + Sqrt[17])/2)^n)/Sqrt[17], {n, 20}] // Expand (* Eric W. Weisstein, Nov 03 2024 *)
    CoefficientList[Series[-(1 - 2 x + 4 x^2)/((-1 + 8 x) (1 - 5 x + 2 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Nov 03 2024 *)
  • PARI
    Vec((1 - 2*x + 4*x^2)/((1 - 8*x)*(1 - 5*x + 2*x^2)) + O(x^25))

Formula

a(n) = 13*a(n-1) - 42*a(n-2) + 16*a(n-3) for n > 3.
a(n) = A013730(n-1) - A107839(n-1).
G.f.: x*(1 - 2*x + 4*x^2)/((1 - 8*x)*(1 - 5*x + 2*x^2)).
Showing 1-10 of 18 results. Next