cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A216412 The cubes arising in A039771.

Original entry on oeis.org

1, 1, 8, 8, 8, 8, 8, 64, 64, 64, 64, 64, 64, 64, 64, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 512, 216, 216, 512, 512, 512, 1000, 1000, 512, 512, 1000, 512, 512, 512, 1728, 1728, 1000, 512, 1000, 512, 1728, 1000, 1728, 1728, 1000, 1000, 1728, 1728, 1000, 1728, 1728, 1000, 1728
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[EulerPhi @ Range[3000], IntegerQ[Surd[#, 3]] &] (* Amiram Eldar, Mar 06 2020 *)

Formula

a(n) = A000010(A039771(n)). - Amiram Eldar, Mar 06 2020

A078164 Numbers k such that phi(k) is a perfect biquadrate.

Original entry on oeis.org

1, 2, 17, 32, 34, 40, 48, 60, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 1297, 1387, 1417, 1729, 1971, 2109, 2223, 2289, 2331, 2445, 2457, 2565, 2594, 2608, 2774, 2812, 2834, 2835, 3052, 3260, 3458, 3888, 3912, 3924, 3942, 3996, 4104, 4212, 4218
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

Corresponding values of phi include 1, 16, 256, 1296, 4096, ... and these arise several times each.
a(3) = A053576(4).
A013776 is a subsequence since phi(2^(4*n+1)) = (2^n)^4. - Bernard Schott, Sep 22 2022
Subsequence of primes is A037896 since in this case: phi(k^4+1) = k^4. - Bernard Schott, Mar 05 2023

Crossrefs

Subsequence of A039770. A037896 is a subsequence.
Sequences where phi(k) is a perfect power: A039770 (square), A039771 (cube), this sequence (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th).

Programs

  • Mathematica
    k=4; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Select[Range[5000],IntegerQ[Surd[EulerPhi[#],4]]&] (* Harvey P. Dale, Apr 30 2015 *)
  • PARI
    is(n)=ispower(eulerphi(n),4) \\ Charles R Greathouse IV, Apr 24 2020
    
  • Python
    from itertools import count, islice
    from sympy import totient, integer_nthroot
    def A078164_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:integer_nthroot(totient(n),4)[1], count(max(1,startvalue)))
    A078164_list = list(islice(A078164_gen(),20)) # Chai Wah Wu, Feb 28 2023

A078165 Numbers k such that phi(k) is a perfect 5th power.

Original entry on oeis.org

1, 2, 51, 64, 68, 80, 96, 102, 120, 1285, 2048, 2056, 2176, 2560, 2570, 2720, 3072, 3084, 3264, 3840, 4080, 7957, 8227, 8279, 9079, 9139, 9709, 9919, 10355, 10595, 11667, 11673, 11691, 12099, 12393, 12483, 12753, 12987, 13797, 14715, 14763
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

As phi(2^(5*n+1)) = (2^n)^5, A013822 is a subsequence. - Bernard Schott, Sep 26 2022
Numbers of the form u = 2^(5*k)*3^(5*m + 1), k>=1, m>=0, are terms because phi(u) = 2^(5*k)*3^(5*m) = (2^k*3^m)^5. - Marius A. Burtea, Sep 26 2022

Examples

			phi of the sequence includes 1, 32, 1024, 7776, ...; powers arise several times; a(3) = A053576(5) = 51.
		

Crossrefs

A013822 is a subsequence.
Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th, this sequence), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=5; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Select[Range[15000],IntegerQ[Surd[EulerPhi[#],5]]&] (* Harvey P. Dale, Jul 26 2019 *)
  • PARI
    is(n)=ispower(eulerphi(n),5) \\ Charles R Greathouse IV, Apr 24 2020

A078166 Numbers k such that phi(k) is a perfect sixth power.

Original entry on oeis.org

1, 2, 85, 128, 136, 160, 170, 192, 204, 240, 4369, 8192, 8224, 8704, 8738, 10240, 10280, 10880, 12288, 12336, 13056, 15360, 15420, 16320, 47197, 47239, 47989, 49267, 49589, 50557, 51319, 52429, 52649, 55699, 57589, 57953, 59495, 63973
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

As phi(2^(6*n+1)) = (2^n)^6, A277757 is a subsequence. - Bernard Schott, Sep 23 2022

Examples

			phi of the sequence includes 1, 64, 4096, 46656,..; powers arise several times; a(3)= A053576(6) = 85; in sequence relatively large jumps are observable when power of new numbers appear.
		

Crossrefs

A277757 is a subsequence.
Numbers k such that phi(k) is a perfect power: A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th, this sequence), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power).

Programs

A078167 Numbers k such that phi(k) is a perfect 7th power.

Original entry on oeis.org

1, 2, 255, 256, 272, 320, 340, 384, 408, 480, 510, 21845, 32768, 32896, 34816, 34952, 40960, 41120, 43520, 43690, 49152, 49344, 52224, 52428, 61440, 61680, 65280, 280999, 281587, 282637, 282949, 283897, 294409, 297449, 300409, 302039, 304399
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Examples

			phi of the sequence includes 1, 128, 16384, 279936, etc..; powers arise several times; a(3) = A053576(7) = 255; in sequence rather large jumps arise when power of new numbers appear.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th, this sequence), A078168 (8th), A078169 (9th), A078170 (10th power), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=7; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 1000000}]
  • PARI
    is(n)=ispower(eulerphi(n),7) \\ Charles R Greathouse IV, Apr 24 2020

A078168 Numbers k such that phi(k) is a perfect 8th power.

Original entry on oeis.org

1, 2, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 65537, 131072, 131074, 131584, 139264, 139808, 163840, 164480, 174080, 174760, 196608, 197376, 208896, 209712, 245760, 246720, 261120, 262140, 1682227, 1683109, 1683559, 1683937
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Examples

			phi of the sequence includes 1, 256, 65536, 1679616, etc.; powers arise several times; a(3) = A053576(7) = 257; in sequence smoother ranges and quite large jumps arise when power of new numbers appear as phi-values.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th, this sequence), A078169 (9th), A078170 (10th power), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=8; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 10000000}]
    Select[Range[2*10^6],IntegerQ[Surd[EulerPhi[#],8]]&] (* Harvey P. Dale, Oct 20 2014 *)
  • PARI
    is(n)=ispower(eulerphi(n),8) \\ Charles R Greathouse IV, Apr 24 2020

A078169 Numbers k such that phi(k) is a perfect 9th power.

Original entry on oeis.org

1, 2, 771, 1024, 1028, 1088, 1280, 1360, 1536, 1542, 1632, 1920, 2040, 327685, 524288, 524296, 526336, 557056, 559232, 655360, 655370, 657920, 696320, 699040, 786432, 786444, 789504, 835584, 838848, 983040, 986880, 1044480, 1048560
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Examples

			phi of the sequence includes 1, 512, 262144,.. etc.; powers arise several times; a(3) = A053576(9) = 771; in sequence smoother ranges and quite large jumps arise when power of new numbers appear as phi-values.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th, this sequence), A078170 (10th power), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=9; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 10000000}]
  • PARI
    is(n)=ispower(eulerphi(n),9) \\ Charles R Greathouse IV, Apr 24 2020

A078170 Numbers k such that phi(k) is a perfect tenth power.

Original entry on oeis.org

1, 2, 1285, 2048, 2056, 2176, 2560, 2570, 2720, 3072, 3084, 3264, 3840, 4080, 1114129, 2097152, 2097184, 2105344, 2228224, 2228258, 2236928, 2621440, 2621480, 2631680, 2785280, 2796160, 3145728, 3145776, 3158016, 3342336
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Examples

			phi of the sequence includes 1, 1024, 1048576,.. etc.; powers emerge several times; a(3) = A053576(10) = 1285; in sequence smoother ranges and quite large jumps alternate when power of new numbers appear as phi-values.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power, this sequence), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=10; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 10000000}]
  • PARI
    is(n)=ispower(eulerphi(n),10) \\ Charles R Greathouse IV, Apr 24 2020

A068559 Numbers m such that phi(m) = tau(m)^3.

Original entry on oeis.org

1, 85, 333, 436, 1542, 1875, 2907, 3285, 3488, 3796, 5196, 10280, 17532, 17776, 20080, 21250, 28305, 30368, 30555, 32708, 34748, 35308, 36860, 37060, 41544, 41568, 43068, 44004, 45162, 48468, 51930, 81324, 98304, 98688, 104856, 131070
Offset: 1

Views

Author

Benoit Cloitre, Mar 25 2002

Keywords

Comments

For all large enough k, we have tau(k) < k^(1/4) and phi(k) > k^(3/4). Hence, tau(k)^3 < k^(3/4) < phi(k), implying that this sequence is finite. In fact, the sequence consists of 614 terms. - Max Alekseyev, May 30 2024

Examples

			a(2) = A107655(3) = 85.
		

Crossrefs

Subsequence of A039771. - Enrique Pérez Herrero, Aug 29 2010

Programs

  • Mathematica
    Select[Range[132000],EulerPhi[#]==DivisorSigma[0,#]^3&]  (* Harvey P. Dale, Dec 28 2022 *)
  • PARI
    isok(m) = eulerphi(m) == numdiv(m)^3; \\ Michel Marcus, Oct 18 2019

A236386 Numbers m such that phi(m) is an oblong number.

Original entry on oeis.org

3, 4, 6, 7, 9, 13, 14, 18, 21, 25, 26, 28, 31, 33, 36, 42, 43, 44, 49, 50, 62, 66, 73, 86, 87, 91, 95, 98, 111, 116, 117, 121, 135, 146, 148, 152, 157, 161, 169, 174, 182, 190, 201, 207, 211, 216, 222, 228, 234, 237, 241, 242, 252, 268, 270, 287, 289, 305
Offset: 1

Views

Author

Joseph L. Pe, Jan 24 2014

Keywords

Comments

An oblong number (A002378) is of the form k*(k+1) where k is a natural number.
From Bernard Schott, Feb 27 2023: (Start)
Subsequence of primes is A002383 because in this case phi(k^2+k+1) = k*(k+1).
Subsequence of oblong numbers is A359847 where k and phi(k) are both oblong numbers. (End)

Examples

			phi(13) = 12 = 3*4, an oblong number; so 13 is a term of the sequence.
		

Crossrefs

Similar, but where phi(m) is: A039770 (square), A039771 (cube), A078164 (biquadrate), A096503 (repdigit), A117296 (palindrome), A360944 (triangular).

Programs

  • Maple
    filter := m -> issqr(1 + 4*phi(m)) : select(filter, [$(1 .. 700)]); # Bernard Schott, Feb 26 2023
  • Mathematica
    Select[Range[500], IntegerQ@Sqrt[1 + 4*EulerPhi[#]] &] (* Giovanni Resta, Jan 24 2014 *)
  • PARI
    isok(m) = my(t=eulerphi(m)); !(t%2) && ispolygonal(t/2, 3); \\ Michel Marcus, Feb 27 2023
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    from sympy import totient
    def A236386_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:is_square((totient(n)<<2)+1), count(max(1,startvalue)))
    A236386_list = list(islice(A236386_gen(),20)) # Chai Wah Wu, Feb 28 2023

Extensions

a(16)-a(58) from Giovanni Resta, Jan 24 2014
Showing 1-10 of 17 results. Next