cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A013732 a(n) = 3^(3*n + 1).

Original entry on oeis.org

3, 81, 2187, 59049, 1594323, 43046721, 1162261467, 31381059609, 847288609443, 22876792454961, 617673396283947, 16677181699666569, 450283905890997363, 12157665459056928801, 328256967394537077627, 8862938119652501095929
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
a(n) = 27*a(n-1); a(0)=3.
G.f.: 3/(1-27*x). (End)

A267088 Perfect powers of the form x^3 + y^3 where x and y are positive integers.

Original entry on oeis.org

9, 16, 128, 243, 576, 1024, 6561, 8192, 9604, 11664, 28224, 36864, 51984, 65536, 97344, 140625, 177147, 250000, 275625, 345744, 419904, 450241, 524288, 614656, 717409, 746496, 1028196, 1058841, 1399489, 1500625, 1590121, 1750329, 1806336, 1882384, 2359296, 3326976, 4194304
Offset: 1

Views

Author

Altug Alkan, Jan 10 2016

Keywords

Comments

Intersection of A001597 and A003325.
Motivation for this sequence is the equation m^k = x^3 + y^3 where x,y,m > 0 and k >= 2.
Obviously, because of Fermat's Last Theorem, a(n) cannot be a cube.
A050802 is a subsequence.
Obviously, this sequence contains all numbers of the form 2^(3*n+1) and 3^(3*n-1), for n > 0.

Examples

			9 is a term because 9 = 3^2 = 1^3 + 2^3.
16 is a term because 16 = 2^4 = 2^3 + 2^3.
243 is a term because 243 = 3^5 = 3^3 + 6^3.
		

Crossrefs

Programs

  • PARI
    T = thueinit('z^3+1);
    is(n) = #select(v->min(v[1], v[2])>0, thue(T, n))>0;
    for(n=2, 1e7, if(ispower(n) && is(n), print1(n, ", ")))

A273893 Denominator of n/3^n.

Original entry on oeis.org

1, 3, 9, 9, 81, 243, 243, 2187, 6561, 2187, 59049, 177147, 177147, 1594323, 4782969, 4782969, 43046721, 129140163, 43046721, 1162261467, 3486784401, 3486784401, 31381059609, 94143178827, 94143178827, 847288609443, 2541865828329, 282429536481, 22876792454961
Offset: 0

Views

Author

Paul Curtz, Jun 02 2016

Keywords

Comments

The reduced values are Ms(n) = 0, 1/3, 2/9, 1/9, 4/81, 5/243, 2/243, 7/2187, 8/6561, 1/2187, ... .
Numerators: 0, 1, 2, 1, 4, ... = A038502(n).
Ms(-n) = 0, -3, -18, ... = - A036290(n).
Difference table of Ms(n):
0, 1/3, 2/9, 1/9, 4/81, 5/243, 2/243, ...
1/3, -1/9, -1/9, -5/81, -7/243, -1/81, ...
-4/9, 0, 4/81, 8/243, 4/243, ...
4/9, 4/81, -4/243, -4/243, ...
-32/81, -16/243, 0, ...
80/243, 16/243, ...
-64/243, ...
etc.
The difference table of O(n) = n/2^n (Oresme numbers) has its 0's on the main diagonal. Here the 0's appear every two rows. For n/4^n,they appear every three rows. (The denominators of O(n) are 2^A093048(n)).
All terms are powers of 3 (A000244).

Crossrefs

Programs

  • Mathematica
    Table[Denominator[n/3^n], {n, 0, 28}] (* Michael De Vlieger, Jun 03 2016 *)
  • PARI
    a(n) = denominator(n/3^n) \\ Felix Fröhlich, Jun 07 2016
  • Sage
    [1] + [3^(n-n.valuation(3)) for n in [1..30]] # Tom Edgar, Jun 02 2016
    

Formula

For n>0, a(n) = 3^(n - valuation(n,3)) = 3^(n - A007949(n)). - Tom Edgar, Jun 02 2016
a(3n+1) = 3^(3n+1), a(3n+2) = 3^(3n+2).
a(3n+6) = 27*(3n+3).
From Peter Bala, Feb 25 2019: (Start)
a(n) = 3^n/gcd(n,3^n).
O.g.f.: 1 + F(3*x) - (2/3)*F((3*x)^3) - (2/9)*F((3*x)^9) - (2/27)*F((3*x)^27) - ..., where F(x) = x/(1 - x).
O.g.f. for reciprocals: Sum_{n >= 0} x^n/a(n) = 1 + F((x/3)) + 2*( F((x/3)^3) + 3*F((x/3)^9) + 9*F((x/3)^27) + ... ). Cf. A038502. (End)

A055156 Powers of 3 which are not powers of 3^3.

Original entry on oeis.org

3, 9, 81, 243, 2187, 6561, 59049, 177147, 1594323, 4782969, 43046721, 129140163, 1162261467, 3486784401, 31381059609, 94143178827, 847288609443, 2541865828329, 22876792454961, 68630377364883, 617673396283947
Offset: 0

Views

Author

Henry Bottomley, Jun 20 2000

Keywords

Crossrefs

Cf. A013732 and A013733. Consists of numbers in A000244 which are not in A009971. See A004171 for powers of 2 which are not powers of 2^2.

Programs

  • Mathematica
    With[{nn=40},Complement[3^Range[nn],27^Range[Floor[nn/3]]]] (* or *) LinearRecurrence[{0,27},{3,9},40] (* Harvey P. Dale, Jul 17 2012 *)

Formula

a(n) = a(n-1)*a(n-2)/a(n-3) = 27*a(n-2) = 3^A001651(n).
a(2n) = 3^(3n+1), a(2n+1) = 3^(3n+2).

A383348 Triangle related to the partitions of n in three colors, read by rows.

Original entry on oeis.org

9, 6, 243, 1, 243, 6561, 0, 90, 8748, 177147, 0, 15, 4860, 295245, 4782969, 0, 1, 1458, 216513, 9565938, 129140163, 0, 0, 252, 91854, 8680203, 301327047, 3486784401, 0, 0, 24, 24786, 4723920, 325241892, 9298091736, 94143178827, 0, 0, 1, 4374, 1712421, 215233605, 11622614670, 282429536481, 2541865828329
Offset: 1

Views

Author

Michel Marcus, Apr 24 2025

Keywords

Examples

			Triangle begins:
  9;
  6, 243;
  1, 243, 6561;
  0, 90, 8748, 177147;
  0, 15, 4860, 295245, 4782969;
  ...
		

References

  • D. S. Gireesh and M. S. Mahadeva Naika, On 3-regular partitions in 3-colors, Indian J. Pure Appl. Math. 50 (2019), 137-148.

Crossrefs

Cf. A013733 (diagonal).

Programs

  • PARI
    M(i,j) = if (j>i, return(0)); if (i==1, if (j==1, return(9))); if (i==2, if (j==1, return(6)); return(243)); if (i==3, if (j==1, return(1)); if (j==2, return(243)); return(6561)); if (i>=4, if (j==1, return(0)); 27*M(i-1,j-1) + 9*M(i-2,j-1) + M(i-3,j-1));
    row(n) = vector(n, i, M(n, i));

Formula

T(i,j) = 27*T(i-1,j-1) + 9*T(i-2,j-1) + T(i-3,j-1).
Showing 1-5 of 5 results.