A013954 a(n) = sigma_6(n), the sum of the 6th powers of the divisors of n.
1, 65, 730, 4161, 15626, 47450, 117650, 266305, 532171, 1015690, 1771562, 3037530, 4826810, 7647250, 11406980, 17043521, 24137570, 34591115, 47045882, 65019786, 85884500, 115151530, 148035890, 194402650, 244156251, 313742650, 387952660, 489541650, 594823322, 741453700
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(6,n): n in [1..30]]; // Bruno Berselli, Apr 10 2013
-
Maple
A013954 := proc(n) numtheory[sigma][6](n) ; end proc: # R. J. Mathar, Oct 13 2011
-
Mathematica
lst={};Do[AppendTo[lst,DivisorSigma[6,n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *) DivisorSigma[6,Range[30]] (* Harvey P. Dale, May 11 2025 *)
-
PARI
a(n)=sigma(n,6) \\ Charles R Greathouse IV, Apr 28 2011
-
Sage
[sigma(n,6)for n in range(1,24)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^6*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^5)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(6*e+6)-1)/(p^6-1).
Dirichlet g.f.: zeta(s)*zeta(s-6).
Sum_{k=1..n} a(k) = zeta(7) * n^7 / 7 + O(n^8). (End)
Comments