A013955 a(n) = sigma_7(n), the sum of the 7th powers of the divisors of n.
1, 129, 2188, 16513, 78126, 282252, 823544, 2113665, 4785157, 10078254, 19487172, 36130444, 62748518, 106237176, 170939688, 270549121, 410338674, 617285253, 893871740, 1290094638, 1801914272, 2513845188, 3404825448, 4624699020, 6103593751, 8094558822, 10465138360
Offset: 1
References
- Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, p. 51.
- Jean-Pierre Serre, A Course in Arithmetic, Springer-Verlag, 1973, Chap. VII, Section 4., p. 93.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- D. B. Lahiri, Some arithmetical identities for Ramanujan's and divisor functions, Bulletin of the Australian Mathematical Society, Volume 1, Issue 3 December 1969, pp. 307-314. See Theorem 3 p. 308.
- Don Zagier, Elliptic modular forms and their applications, The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_8(z).
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(7,n): n in [1..30]]; // Bruno Berselli, Apr 10 2013
-
Mathematica
lst={};Do[AppendTo[lst,DivisorSigma[7,n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *) DivisorSigma[7,Range[30]] (* Harvey P. Dale, Dec 10 2016 *)
-
PARI
a(n)=if(n<1,0,sigma(n,7))
-
Sage
[sigma(n, 7) for n in range(1, 23)] # Zerinvary Lajos, Jun 04 2009
Formula
Let sigma(p,n) be the sum of the p-th powers of the divisors of n. Then sigma(7,n) = sigma(3,n) + 120 sum(sigma(3,k) sigma(3,n-k),k=1..n-1) (Cf. A087115). - Eugene Salamin, Apr 29 2006 [Hurwitz Identity, Math. Werke I, 1-66, p. 50, last line. See, e.g., the Koecher-Krieg reference, p. 51, rewritten. - Wolfdieter Lang, Jan 20 2016]
G.f.: Sum_{k>=1} k^7*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^6)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(7*e+7)-1)/(p^7-1).
Dirichlet g.f.: zeta(s)*zeta(s-7).
Sum_{k=1..n} a(k) = zeta(8) * n^8 / 8 + O(n^9). (End)
Comments