A013956 a(n) = sigma_8(n), the sum of the 8th powers of the divisors of n.
1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 43053283, 100390882, 214358882, 431733666, 815730722, 1481554114, 2563287812, 4311810305, 6975757442, 11064693731, 16983563042, 25700456418, 37828630724, 55090232674, 78310985282, 110523825058, 152588281251
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(8,n): n in [1..30]]; // Bruno Berselli, Apr 10 2013
-
Mathematica
Table[DivisorSigma[8,n],{n,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
-
PARI
a(n)=sigma(n,8) \\ Charles R Greathouse IV, Apr 28 2011
-
Sage
[sigma(n,8)for n in range(1,21)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^8*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^7)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(8*e+8)-1)/(p^8-1).
Dirichlet g.f.: zeta(s)*zeta(s-8).
Sum_{k=1..n} a(k) = zeta(9) * n^9 / 9 + O(n^10). (End)
Comments