cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)

Examples

			For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
  • H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
  • Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
  • A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
  • G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
  • Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.

Crossrefs

See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

Programs

  • GAP
    A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [SumOfDivisors(n): n in [1..70]];
    
  • Magma
    [DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
  • Mathematica
    Table[ DivisorSigma[1, n], {n, 100}]
    a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
  • Maxima
    makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • MuPAD
    numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
    (APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
  • SageMath
    [sigma(n, 1) for n in range(1, 71)]  # Zerinvary Lajos, Jun 04 2009
    
  • Scheme
    (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
    
  • Scheme
    (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
    

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
a(n) < (7n*A001221(n) + 10*n)/6 [Duncan, 1961] (see Duncan and Tattersall). - Stefano Spezia, Jul 13 2025

A351314 Sum of the 8th powers of the square divisors of n.

Original entry on oeis.org

1, 1, 1, 65537, 1, 1, 1, 65537, 43046722, 1, 1, 65537, 1, 1, 1, 4295032833, 1, 43046722, 1, 65537, 1, 1, 1, 65537, 152587890626, 1, 43046722, 65537, 1, 1, 1, 4295032833, 1, 1, 1, 2821153019714, 1, 1, 1, 65537, 1, 1, 1, 65537, 43046722, 1, 1, 4295032833, 33232930569602, 152587890626
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Inverse Möbius transform of n^8 * c(n), where c(n) is the characteristic function of squares (A010052). - Wesley Ivan Hurt, Jun 21 2024

Examples

			a(16) = 4295032833; a(16) = Sum_{d^2|16} (d^2)^8 = (1^2)^8 + (2^2)^8 + (4^2)^8 = 4295032833.
		

Crossrefs

Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), this sequence (k=8), A351315 (k=9), A351316 (k=10).

Programs

  • Mathematica
    f[p_, e_] := (p^(16*(1 + Floor[e/2])) - 1)/(p^16 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 07 2022 *)
    Table[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]^8],{n,80}] (* Harvey P. Dale, Feb 13 2022 *)
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, k^16*x^k^2/(1-x^k^2))) \\ Seiichi Manyama, Feb 12 2022

Formula

a(n) = Sum_{d^2|n} (d^2)^8.
Multiplicative with a(p) = (p^(16*(1+floor(e/2))) - 1)/(p^16 - 1). - Amiram Eldar, Feb 07 2022
G.f.: Sum_{k>0} k^16*x^(k^2)/(1-x^(k^2)). - Seiichi Manyama, Feb 12 2022
From Amiram Eldar, Sep 20 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-16).
Sum_{k=1..n} a(k) ~ (zeta(17/2)/17) * n^(17/2). (End)
a(n) = Sum_{d|n} d^8 * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 21 2024
a(n) = Sum_{d|n} lambda(d)*d^8*sigma_8(n/d), where lambda = A008836. - Ridouane Oudra, Jul 19 2025

A301546 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_8(k)).

Original entry on oeis.org

1, 1, 258, 6820, 105766, 2182826, 45173473, 800612809, 13879861574, 241973744859, 4071054739686, 66245877049645, 1059457994097088, 16655445770672940, 256617914952467489, 3883513723831505532, 57872822529451093718, 849759474364551701693, 12298914986733768863591
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[8, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(10 * 2^(7/10) * Pi * (Zeta(9)/33)^(1/10) * n^(9/10)/9 + Pi * (11/Zeta(9))^(1/10) * n^(1/10) / (480 * 2^(7/10) * 3^(9/10)) - 315*Zeta(9) / (8*Pi^8)) * (Zeta(9)/33)^(1/20) / (2^(13/20) * sqrt(5) * n^(11/20)).
G.f.: exp(Sum_{k>=1} sigma_9(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A082245 Sum of (n-1)-th powers of divisors of n.

Original entry on oeis.org

1, 3, 10, 73, 626, 8052, 117650, 2113665, 43053283, 1001953638, 25937424602, 743375541244, 23298085122482, 793811662272744, 29192932133689220, 1152956690052710401, 48661191875666868482, 2185928253847184914509
Offset: 1

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

a(n) = t(n,n-1), t as defined in A082771;
a(1)=A000005(1), a(2)=A000203(2), a(3)=A001157(3), a(4)=A001158(4), a(5)=A001159(5), a(6)=A001160(6), a(7)=A013954(7), a(8)=A013955(8).

Examples

			a(6) = 1^5 + 2^5 + 3^5 + 6^5 = 1 + 32 + 243 + 7776 = 8052.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(n-1, n): n in [1..20]]; // G. C. Greubel, Nov 02 2018
  • Mathematica
    Table[Total[Divisors[n]^(n-1)], {n,18}] (* T. D. Noe, Oct 25 2006 *)
    Table[DivisorSigma[n-1,n], {n,1,20}] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    a(n) = sigma(n, n-1); \\ Michel Marcus, Nov 07 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^2))))) \\ Seiichi Manyama, Jun 23 2019
    
  • Sage
    [sigma(n,(n-1))for n in range(1,19)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^(k-1)*x^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 02 2018
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 23 2019
Limit_{n->oo} a(n)/A023887(n-1) = e (A001113) (Sugunamma, 1960). - Amiram Eldar, Apr 15 2021

Extensions

Corrected by T. D. Noe, Oct 25 2006

A372966 a(n) = sigma_8(n^2)/sigma_4(n^2).

Original entry on oeis.org

1, 241, 6481, 61681, 390001, 1561921, 5762401, 15790321, 42521761, 93990241, 214344241, 399754561, 815702161, 1388738641, 2527596481, 4042322161, 6975673921, 10247744401, 16983432721, 24055651681, 37346120881, 51656962081, 78310705441, 102337070401
Offset: 1

Views

Author

Seiichi Manyama, May 18 2024

Keywords

Comments

Apparently, a(n) == 1 (mod 240). - Hugo Pfoertner, May 20 2024

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(8*e + 4) + 1)/(p^4 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 24] (* Amiram Eldar, May 20 2024 *)
  • PARI
    a(n) = sigma(n^2, 8)/sigma(n^2, 4);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^4*sigma(d, 8));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} ( n/gcd(x_1, x_2, x_3, x_4, n) )^4.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^4 * sigma_8(d).
From Amiram Eldar, May 20 2024: (Start)
Multiplicative with a(p^e) = (p^(8*e + 4) + 1)/(p^4 + 1).
Dirichlet g.f.: zeta(s)*zeta(s-8)/zeta(s-4).
Sum_{k=1..n} a(k) ~ (zeta(9)/(9*zeta(5))) * n^9. (End)

A055712 Numbers k such that k | sigma_8(k).

Original entry on oeis.org

1, 84, 156, 204, 364, 476, 514, 1092, 1428, 2316, 2652, 2892, 6069, 6188, 6748, 12138, 12532, 16212, 16388, 18564, 20244, 24276, 30108, 37596, 39372, 49164, 63291, 78897, 87724, 99202, 114716, 126582, 147679, 157794, 167331
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_8(k) is the sum of the 8th powers of the divisors of k (A013956).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[8, n], n]==0, Print[n]], {n, 1, 10000}]
    Select[Range[170000],Divisible[DivisorSigma[8,#],#]&] (* Harvey P. Dale, Sep 15 2019 *)
  • PARI
    is(n)=sigma(n,8)%n==0 \\ Charles R Greathouse IV, Feb 04 2013

A082771 Triangular array, read by rows: t(n,k) = Sum_{d|n} d^k, 0 <= k < n.

Original entry on oeis.org

1, 2, 3, 2, 4, 10, 3, 7, 21, 73, 2, 6, 26, 126, 626, 4, 12, 50, 252, 1394, 8052, 2, 8, 50, 344, 2402, 16808, 117650, 4, 15, 85, 585, 4369, 33825, 266305, 2113665, 3, 13, 91, 757, 6643, 59293, 532171, 4785157, 43053283, 4, 18, 130, 1134, 10642, 103158, 1015690, 10078254, 100390882, 1001953638
Offset: 1

Views

Author

Reinhard Zumkeller, May 21 2003

Keywords

Examples

			From _R. J. Mathar_, Dec 06 2006 (Start):
The triangle may be extended to a rectangular array (A319278):
  1  1   1    1     1 1 1 1 1 1 1 ...
  2  3   5    9    17 33 65 129 257 513 1025 ...
  2  4  10   28    82 244 730 2188 6562 19684 59050 ...
  3  7  21   73   273 1057 4161 16513 65793 262657 1049601 ...
  2  6  26  126   626 3126 15626 78126 390626 1953126 9765626 ...
  4 12  50  252  1394 8052 47450 282252 1686434 10097892 60526250 ...
  2  8  50  344  2402 16808 117650 823544 5764802 40353608 282475250 ...
  4 15  85  585  4369 33825 266305 2113665 16843009 134480385 1074791425 ...
  3 13  91  757  6643 59293 532171 4785157 43053283 387440173 3486843451 ...
  4 18 130 1134 10642 103158 1015690 10078254 100390882 1001953638... (End)
		

Crossrefs

Programs

  • Maple
    T:= (n,k)-> numtheory[sigma][k](n):
    seq(seq(T(n,k), k=0..n-1), n=1..10);  # Alois P. Heinz, Oct 25 2024
  • Mathematica
    T[n_, k_] := DivisorSigma[k, n];
    Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)
  • PARI
    row(n) = {my(f = factor(n)); vector(n, k, sigma(f, k-1));} \\ Amiram Eldar, May 09 2025

Formula

t(n, k) = Product(((p^((e(n, p)+1)*k))-1)/(p^k-1): n=Product(p^e(n, p): p prime)), 0<=k
t(n,0) = A000005(n), t(n,n) = A023887(n).
t(n,1) = A000203(n), n>1; t(n,2) = A001157(n), n>2; t(n,3) = A001158(n), n>3.
t(n,4) = A001159(n), n>4; t(n,5) = A001160(n), n>5; t(n,6) = A013954(n), n>6.
From R. J. Mathar, Oct 29 2006: (Start)
t(2,k) = A000051(k); t(3,k) = A034472(k); t(4,k) = A001576(k);
t(5,k) = A034474(k); t(6,k) = A034488(k); t(7,k) = A034491(k);
t(8,k) = A034496(k); t(9,k) = A034513(k); t(10,k) = A034517(k);
t(11,k) = A034524(k); t(12,k) = A034660(k). (End)

Extensions

Corrected by R. J. Mathar, Dec 05 2006

A301552 Expansion of Product_{k>=1} (1 + x^k)^(sigma_8(k)).

Original entry on oeis.org

1, 1, 257, 6819, 105251, 2175749, 44995096, 796670938, 13805853214, 240569119333, 4044892975196, 65784204818948, 1051532586300939, 16521916387136217, 254423642953508270, 3848289482388789293, 57317953928614093036, 841172595390506945766, 12168324212099663732171
Offset: 0

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[8, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(5 * 2^(4/5) * Pi * (511*Zeta(9)/33)^(1/10) * n^(9/10)/9 + Pi * (11/(511*Zeta(9)))^(1/10) * n^(1/10) / (480 * 2^(4/5) * 3^(9/10))) * (511*Zeta(9)/33)^(1/20) / (2^(11/10) * sqrt(5) * n^(11/20)).
G.f.: exp(Sum_{k>=1} sigma_9(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Oct 26 2018

A211347 Numbers n such that n = sigma_k(m) for some k >= 1.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 26, 28, 30, 31, 32, 33, 36, 38, 39, 40, 42, 44, 48, 50, 54, 56, 57, 60, 62, 63, 65, 68, 72, 73, 74, 78, 80, 82, 84, 85, 90, 91, 93, 96, 98, 102, 104, 108, 110, 112, 114, 120, 121, 122
Offset: 1

Author

Jon Perry, Feb 05 2013

Keywords

Comments

Sigma_k(n) = Sum[d|n, d^k].
Sigma_0(n) can be any positive integer and so is ignored in this sequence.
The asymptotic density of this sequence is 0 (Niven, 1951, Rao and Murty, 1979). - Amiram Eldar, Jul 23 2020

Examples

			Sigma_2(4) = 1 + 4 + 16 = 21 so 21 is in the sequence.
		

Programs

  • Mathematica
    upto[n_] := Select[Union@Flatten[{1, DivisorSigma[Range@Max[1,Floor@Log[#,n]], #] & /@ Range[2,n]}], # <= n &]; upto[122] (* Giovanni Resta, Feb 05 2013 *)
  • PARI
    list(lim)=if(lim<3, return(if(lim<1,[],[1]))); my(v=List([1])); for(k=1,logint((lim\=1)-1,2), forfactored(m=2,sqrtnint(lim-1,k), my(t=sigma(m,k)); if(t<=lim, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Apr 09 2022

A386751 a(n) = n*sigma_8(n).

Original entry on oeis.org

0, 1, 514, 19686, 263172, 1953130, 10118604, 40353614, 134744072, 387479547, 1003908820, 2357947702, 5180803992, 10604499386, 20741757596, 38449317180, 68988964880, 118587876514, 199164487158, 322687697798, 514009128360, 794401245204, 1211985118828, 1801152661486
Offset: 0

Author

Vaclav Kotesovec, Aug 01 2025

Keywords

Programs

  • Magma
    [0] cat [n*DivisorSigma(8,n): n in [1..25]]; // Vincenzo Librandi, Aug 02 2025
  • Mathematica
    Table[n*DivisorSigma[8, n], {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x*Sum[k^9*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^9*x^(k-1)/(1 - x^k)^2.
a(n) = n*A013956(n).
Dirichlet g.f.: zeta(s-1)*zeta(s-9). - R. J. Mathar, Aug 03 2025
Showing 1-10 of 18 results. Next