A013965 a(n) = sigma_17(n), the sum of the 17th powers of the divisors of n.
1, 131073, 129140164, 17180000257, 762939453126, 16926788715972, 232630513987208, 2251816993685505, 16677181828806733, 100000762939584198, 505447028499293772, 2218628050709022148, 8650415919381337934, 30491579359845314184, 98526126098761952664
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(17, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
-
Mathematica
DivisorSigma[17,Range[20]] (* Harvey P. Dale, May 30 2013 *)
-
PARI
my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^17*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
-
PARI
a(n) = sigma(n, 17); \\ Amiram Eldar, Oct 29 2023
-
Sage
[sigma(n,17)for n in range(1,14)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^17*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-17)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 43867/28728, also equals Bernoulli(18)/36. - Simon Plouffe, May 06 2023
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(17*e+17)-1)/(p^17-1).
Sum_{k=1..n} a(k) = zeta(18) * n^18 / 18 + O(n^19). (End)
Comments