A014284 Partial sums of primes, if 1 is regarded as a prime (as it was until quite recently, see A008578).
1, 3, 6, 11, 18, 29, 42, 59, 78, 101, 130, 161, 198, 239, 282, 329, 382, 441, 502, 569, 640, 713, 792, 875, 964, 1061, 1162, 1265, 1372, 1481, 1594, 1721, 1852, 1989, 2128, 2277, 2428, 2585, 2748, 2915, 3088, 3267, 3448, 3639, 3832, 4029
Offset: 1
Examples
a(7) = 42 because the first six primes (2, 3, 5, 7, 11, 13) add up to 41, and 1 + 41 = 42.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
a014284 n = a014284_list !! n a014284_list = scanl1 (+) a008578_list -- Reinhard Zumkeller, Mar 26 2015
-
Magma
[1] cat [1 + (&+[NthPrime(j): j in [1..n]]): n in [1..50]]; // G. C. Greubel, Jun 18 2019
-
Maple
A014284 := proc(n) add(A008578(i),i=1..n) ; end proc: seq(A014284(n),n=1..60) ; # R. J. Mathar, Mar 05 2017
-
Mathematica
Join[{1}, Table[1+Sum[Prime[j], {j,1,n}], {n,1,50}]] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2009, modified by G. C. Greubel, Jun 18 2019 *) Accumulate[Join[{1}, Prime[Range[45]]]] (* Alonso del Arte, Oct 09 2012 *)
-
PARI
concat([1], vector(50, n, 1 + sum(j=1,n, prime(j)) )) \\ G. C. Greubel, Jun 18 2019
-
Sage
[1]+[1 + sum(nth_prime(j) for j in (1..n)) for n in (1..50)] # G. C. Greubel, Jun 18 2019
Formula
a(n) = Sum_{k <= n} [(A158611(k + 1)) * (A000012(n - k + 1))] = Sum_{k <= n} [(A158611(k + 1)) * (A000012(k))] = Sum_{k <= n} [(A008578(k)) * (A000012(n - k + 1))] = Sum_{k <= n} [(A008578(k)) * (A000012(k))] for n, k >= 1. - Jaroslav Krizek, Aug 05 2009
a(n + 1) = A007504(n) + 1. a(n + 1) - a(n) = A000040(n) = n-th primes. - Jaroslav Krizek, Aug 19 2009
a(n) = a(n-1) + prime(n-1), with a(1)=1. - Vincenzo Librandi, Jul 27 2013
G.f: (x*(1+b(x)))/(1-x) = c(x)/(1-x), where b(x) and c(x) are respectively the g.f. of A000040 and A008578. - Mario C. Enriquez, Dec 10 2016
Comments