cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A175969 Complement of A014284(n), where A014284(n) = the lexicographically earliest sequence with first differences as increasing sequence of primes A000040.

Original entry on oeis.org

2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Jaroslav Krizek, Oct 31 2010

Keywords

Crossrefs

A024521 Erroneous version of A014284.

Original entry on oeis.org

1, 2, 6, 11, 18, 29, 42, 59, 78, 101, 130, 161, 198, 239, 282, 329, 382, 441, 502, 569
Offset: 1

Views

Author

Keywords

A086741 a(n) = A026905(n) - A014284(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 7, 18, 37, 64, 110, 174, 268, 401, 585, 829, 1155, 1584, 2144, 2865, 3794, 4970, 6462, 8331, 10670, 13579, 17194, 21652, 27147, 33876, 42098, 52110, 64283, 79027, 96855, 118341, 144199, 175221, 212392, 256802, 309797, 372877, 447861, 536802, 642163, 766718, 913780
Offset: 1

Views

Author

Jon Perry, Jul 29 2003

Keywords

Comments

Partial sums of partition numbers - partial sums of primes, if 1 is considered as a prime.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, numbpart(k)) - (1 + vecsum(primes(n-1))); \\ Michel Marcus, Aug 10 2023

Extensions

More terms from Michel Marcus, Aug 10 2023

A123213 a(n) = A062457(n) concatenated with A014284(n).

Original entry on oeis.org

21, 93, 1256, 240111, 16105118, 482680929, 41033867342, 1698356304159, 180115266146378, 420707233300201101, 25408476896404831130, 6582952005840035281161, 925103102315013629321198, 73885357344138503765449239, 12063348350820368238715343282
Offset: 1

Views

Author

Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 05 2006

Keywords

Examples

			a(1) = 21 = 2 concatenated with 1.
a(2) = 93 = 9 concatenated with 3.
a(3) = 1256 = 125 concatenated with 6.
a(4) = 240111 = 2401 concatenated with 11.
		

Crossrefs

Programs

  • Mathematica
    rng=13;A062457=Table[Prime[n]^n, {n, rng}] ;A014284=Accumulate[Join[{1}, Prime[Range[rng-1]]]];Table[FromDigits[Join[IntegerDigits[A062457[[n]]],IntegerDigits[A014284[[n]]]]],{n,rng}] (* James C. McMahon, Nov 17 2024 *)
  • PARI
    s=1;print1(21,",");for(n=2,20,s=s+prime(n-1);print1(prime(n)^n,s,","))

A361150 a(n) = A014284(n^2) + A014284(n^2-1).

Original entry on oeis.org

1, 17, 137, 611, 1839, 4405, 9101, 16859, 28987, 46663, 71797, 105863, 151259, 209895, 284777, 378661, 493863, 634985, 804801, 1007439, 1245345, 1526369, 1851971, 2227153, 2658287, 3151447, 3711837, 4343483, 5053859, 5849959, 6739255, 7727399, 8825137, 10034745
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 34; s = Accumulate[{1}~Join~Prime@ Range[nn^2]]; {1}~Join~Array[Total@ s[[# - 1 ;; #]] &[#^2] &, nn - 1, 2] (* Michael De Vlieger, Aug 10 2023 *)
  • PARI
    f(n) = if (n, 1 + vecsum(primes(n-1)), 0); \\ A014284
    a(n) = f(n^2) + f(n^2-1); \\ Michel Marcus, Aug 10 2023

Formula

a(n) = 2*A014284(n^2-1) + A008578(n^2). - Michel Marcus, Aug 10 2023

A007504 Sum of the first n primes.

Original entry on oeis.org

0, 2, 5, 10, 17, 28, 41, 58, 77, 100, 129, 160, 197, 238, 281, 328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888
Offset: 0

Views

Author

Keywords

Comments

It appears that a(n)^2 - a(n-1)^2 = A034960(n). - Gary Detlefs, Dec 20 2011
This is true. Proof: By definition we have A034960(n) = Sum_{k = (a(n-1)+1)..a(n)} (2*k-1). Since Sum_{k = 1..n} (2*k-1) = n^2, it follows A034960(n) = a(n)^2 - a(n-1)^2, for n > 1. - Hieronymus Fischer, Sep 27 2012 [formulas above adjusted to changed offset of A034960 - Hieronymus Fischer, Oct 14 2012]
Row sums of the triangle in A037126. - Reinhard Zumkeller, Oct 01 2012
Ramanujan noticed the apparent identity between the prime parts partition numbers A000607 and the expansion of Sum_{k >= 0} x^a(k)/((1-x)...(1-x^k)), cf. A046676. See A192541 for the difference between the two. - M. F. Hasler, Mar 05 2014
For n > 0: row 1 in A254858. - Reinhard Zumkeller, Feb 08 2015
a(n) is the smallest number that can be partitioned into n distinct primes. - Alonso del Arte, May 30 2017
For a(n) < m < a(n+1), n > 0, at least one m is a perfect square.
Proof: For n = 1, 2, ..., 6, the proposition is clear. For n > 6, a(n) < ((prime(n) - 1)/2)^2, set (k - 1)^2 <= a(n) < k^2 < ((prime(n) + 1)/2)^2, then k^2 < (k - 1)^2 + prime(n) <= a(n) + prime(n) = a(n+1), so m = k^2 is this perfect square. - Jinyuan Wang, Oct 04 2018
For n >= 5 we have a(n) < ((prime(n)+1)/2)^2. This can be shown by noting that ((prime(n)+1)/2)^2 - ((prime(n-1)+1)/2)^2 - prime(n) = (prime(n)+prime(n-1))*(prime(n)-prime(n-1)-2)/4 >= 0. - Jianing Song, Nov 13 2022
Washington gives an oscillation formula for |a(n) - pi(n^2)|, see links. - Charles R Greathouse IV, Dec 07 2022

References

  • E. Bach and J. Shallit, §2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.
  • H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A122989 for the value of Sum_{n >= 1} 1/a(n).

Programs

  • GAP
    P:=Filtered([1..250],IsPrime);;
    a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Oct 07 2018
    
  • Haskell
    a007504 n = a007504_list !! n
    a007504_list = scanl (+) 0 a000040_list
    -- Reinhard Zumkeller, Oct 01 2014, Oct 03 2011
    
  • Magma
    [0] cat [&+[ NthPrime(k): k in [1..n]]: n in [1..50]]; // Bruno Berselli, Apr 11 2011 (adapted by Vincenzo Librandi, Nov 27 2015 after Hasler's change on Mar 05 2014)
    
  • Maple
    s1:=[2]; for n from 2 to 1000 do s1:=[op(s1),s1[n-1]+ithprime(n)]; od: s1;
    A007504 := proc(n)
        add(ithprime(i), i=1..n) ;
    end proc: # R. J. Mathar, Sep 20 2015
  • Mathematica
    Accumulate[Prime[Range[100]]] (* Zak Seidov, Apr 10 2011 *)
    primeRunSum = 0; Table[primeRunSum = primeRunSum + Prime[k], {k, 100}] (* Zak Seidov, Apr 16 2011 *)
  • PARI
    A007504(n) = sum(k=1,n,prime(k)) \\ Michael B. Porter, Feb 26 2010
    
  • PARI
    a(n) = vecsum(primes(n)); \\ Michel Marcus, Feb 06 2021
    
  • Python
    from itertools import accumulate, count, islice
    from sympy import prime
    def A007504_gen(): return accumulate(prime(n) if n > 0 else 0 for n in count(0))
    A007504_list = list(islice(A007504_gen(),20)) # Chai Wah Wu, Feb 23 2022

Formula

a(n) ~ n^2 * log(n) / 2. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 24 2001 (see Bach & Shallit 1996)
a(n) = A014284(n+1) - 1. - Jaroslav Krizek, Aug 19 2009
a(n+1) - a(n) = A000040(n+1). - Jaroslav Krizek, Aug 19 2009
a(A051838(n)) = A002110(A051838(n)) / A116536(n). - Reinhard Zumkeller, Oct 03 2011
a(n) = min(A068873(n), A073619(n)) for n > 1. - Jonathan Sondow, Jul 10 2012
a(n) = A033286(n) - A152535(n). - Omar E. Pol, Aug 09 2012
For n >= 3, a(n) >= (n-1)^2 * (log(n-1) - 1/2)/2 and a(n) <= n*(n+1)*(log(n) + log(log(n))+ 1)/2. Thus a(n) = n^2 * log(n) / 2 + O(n^2*log(log(n))). It is more precise than in Fares's comment. - Vladimir Shevelev, Aug 01 2013
a(n) = (n^2/2)*(log n + log log n - 3/2 + (log log n - 3)/log n + (2 (log log n)^2 - 14 log log n + 27)/(4 log^2 n) + O((log log n/log n)^3)) [Sinha]. - Charles R Greathouse IV, Jun 11 2015
G.f: (x*b(x))/(1-x), where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 10 2016
a(n) = A008472(A002110(n)), for n > 0. - Michel Marcus, Jul 16 2020

Extensions

More terms from Stefan Steinerberger, Apr 11 2006
a(0) = 0 prepended by M. F. Hasler, Mar 05 2014

A018252 The nonprime numbers: 1 together with the composite numbers, A002808.

Original entry on oeis.org

1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Keywords

Comments

d(a(n)) != 2 (cf. A000005). - Juri-Stepan Gerasimov, Oct 17 2009
Number of prime divisors of a(n) (counted with multiplicity) != 1. - Juri-Stepan Gerasimov, Oct 30 2009
Largest nonprime < n-th composite. - Juri-Stepan Gerasimov, Oct 29 2009
The nonnegative nonprimes A141468 without zero; the natural nonprimes; the whole nonprimes; the counting nonprimes. If the nonprime numbers A141468 which are also the nonnegative integers A001477, then the nonprimes A141468 also called the nonnegative nonprimes. If the nonprime numbers A018252 which are also the natural (or whole or counting) numbers A000027, then the nonprimes A018252 also called the natural nonprimes, the whole nonprimes and the counting nonprimes. - Juri-Stepan Gerasimov, Nov 22 2009
Smallest nonprime > n-th nonnegative nonprime. - Juri-Stepan Gerasimov, Dec 04 2009
a(n) = A175944(A014284(n)) = A175944(A175965(n)). - Reinhard Zumkeller, Mar 18 2011

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.

Crossrefs

Cf. A000040 (complement), A002808.
Boustrophedon transforms: A230955, A230954.

Programs

  • GAP
    A018252 := Difference([1..10^5], Filtered([1..10^5], IsPrime)); # Muniru A Asiru, Oct 21 2017
    
  • Haskell
    a018252 n = a018252_list !! (n-1)
    a018252_list = filter ((== 0) . a010051) [1..]
    -- Reinhard Zumkeller, Mar 31 2014
    
  • Magma
    [n : n in [1..100] | not IsPrime(n) ];
    
  • Maple
    with(numtheory); sort(convert(convert([ seq(i,i=1..541) ],set) minus convert([ seq(ithprime(i),i=1..100) ],set),list));
    seq(`if`(not isprime(n),n,NULL),n=1..88); # Peter Luschny, Jul 29 2009
    A018252 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do; end if; end proc: # R. J. Mathar, Oct 22 2010
  • Mathematica
    nonPrime[n_Integer] := FixedPoint[n + PrimePi@# &, n + PrimePi@ n]; Array[ nonPrime, 75] (* Robert G. Wilson v, Jan 29 2015, based on the algorithm by Labos Elemer in A006508 *)
    max = 90; Complement[Range[max], Prime[Range[PrimePi[max]]]] (* Harvey P. Dale, Aug 12 2011 *)
    Join[{1}, Select[Range[100], CompositeQ]] (* Jean-François Alcover, Nov 07 2021 *)
  • PARI
    isA018252(n) = !isprime(n)
    A018252(n) = {local(a,b);b=n;a=1;while(a!=b,a=b;b=n+primepi(a));b} \\ Michael B. Porter, Nov 06 2009
    
  • PARI
    a(n) = my(k=0); while(-n+n-=k-k=primepi(n), ); n; \\ Ruud H.G. van Tol, Jul 15 2024 (after code in A002808)
    
  • Python
    from sympy import isprime
    def ok(n): return not isprime(n)
    print([k for k in range(1, 89) if ok(k)]) # Michael S. Branicky, Nov 10 2022
    
  • Python
    from sympy import composite
    def A018252(n): return 1 if n == 1 else composite(n-1) # Chai Wah Wu, Nov 15 2022
  • Sage
    def A018252_list(n) :
        return [k for k in (1..n) if not k.is_prime()]
    A018252_list(88)  # Peter Luschny, Feb 03 2012
    

Formula

Let b(0) = n + pi(n) and b(n+1) = n + pi(b(n)), with pi(n) = A000720(n); then a(n) is the limit value of b(n). - Floor van Lamoen, Oct 08 2001
a(n) = A137621(A137624(n)). - Reinhard Zumkeller, Jan 30 2008
A010051(a(n)) = 0. - Reinhard Zumkeller, Mar 31 2014
A239968(a(n)) = n. - Reinhard Zumkeller, Dec 02 2014

A051349 Sum of first n nonprimes.

Original entry on oeis.org

0, 1, 5, 11, 19, 28, 38, 50, 64, 79, 95, 113, 133, 154, 176, 200, 225, 251, 278, 306, 336, 368, 401, 435, 470, 506, 544, 583, 623, 665, 709, 754, 800, 848, 897, 947, 998, 1050, 1104, 1159, 1215, 1272, 1330, 1390, 1452, 1515, 1579, 1644, 1710, 1778, 1847, 1917
Offset: 0

Views

Author

Armand Turpel (armandt(AT)unforgettable.com)

Keywords

Comments

Partial sums of A141468 or A018252. - R. J. Mathar, Mar 01 2009
The lexicographically earliest sequence with first differences as increasing sequence of composites A002808. Complement of A175970. See A175965, A175966, A175967, A014284, A175969, A175970. - Jaroslav Krizek, Oct 31 2010

Crossrefs

Programs

  • Maple
    ithnonprime := proc(n)local k: option remember: if(n=1)then return 1: fi: for k from procname(n-1)+1 do if(not isprime(k))then return k fi: od: end: A051349 := proc(n) option remember: local k: if(n<=1)then return n: fi: return ithnonprime(n)+procname(n-1): end: seq(A051349(n),n=0..51); # Nathaniel Johnston, May 25 2011
  • Mathematica
    lst={};s=0;Do[If[ !PrimeQ[n], s=s+n;AppendTo[lst, s]], {n, 0, 10^2}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)

Formula

Sum_{n>=1} 1/a(n) = A122998. - Amiram Eldar, Nov 17 2020

A175965 Lexicographically earliest sequence with first differences as increasing sequence of noncomposites A008578.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 43, 60, 79, 102, 131, 162, 199, 240, 283, 330, 383, 442, 503, 570, 641, 714, 793, 876, 965, 1062, 1163, 1266, 1373, 1482, 1595, 1722, 1853, 1990, 2129, 2278, 2429, 2586, 2749, 2916, 3089, 3268, 3449, 3640, 3833, 4030, 4229, 4440, 4663
Offset: 1

Views

Author

Jaroslav Krizek, Oct 31 2010

Keywords

Comments

Complement of A175966.
A175944(a(n)) = A018252(n). - Reinhard Zumkeller, Mar 18 2011

Crossrefs

Programs

  • Haskell
    a175965 n = a175965_list !! n
    a175965_list = scanl (+) 1 a008578_list
    -- Reinhard Zumkeller, Mar 26 2015
  • Mathematica
    FoldList[Plus,1,Join[{1},Prime[Range[50]]]] (* or *) Accumulate[ Join[ {1,1},Prime[Range[50]]]] (* Harvey P. Dale, Sep 28 2016 *)

Formula

a(n) = A036439(n-1) for n > 1.
a(n) - a(n-1) = A008578(n-1) for n > 1.
a(n) = A014284(n-1) + 1 for n > 1.

A175967 Lexicographically earliest sequence with first differences as increasing sequence of nonprimes A018252.

Original entry on oeis.org

1, 2, 6, 12, 20, 29, 39, 51, 65, 80, 96, 114, 134, 155, 177, 201, 226, 252, 279, 307, 337, 369, 402, 436, 471, 507, 545, 584, 624, 666, 710, 755, 801, 849, 898, 948, 999, 1051, 1105, 1160, 1216, 1273, 1331, 1391, 1453, 1516, 1580, 1645, 1711, 1779
Offset: 1

Views

Author

Jaroslav Krizek, Oct 31 2010

Keywords

Comments

Complement of A175968.

Crossrefs

Programs

  • Haskell
    a175967 n = a175967_list !! n
    a175967_list = scanl (+) 1 a018252_list
    -- Reinhard Zumkeller, Mar 26 2015

Formula

a(n) - a(n-1) = A018252(n-1) for n >= 2.
Showing 1-10 of 40 results. Next