A274804
The exponential transform of sigma(n).
Original entry on oeis.org
1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0
Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 0..531
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
Cf.
A177208,
A177209,
A006351,
A197505,
A144180,
A256180,
A033462,
A198046,
A134954,
A145460,
A188489,
A005432,
A029725,
A124213,
A002801.
-
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)
A348468
Expansion of e.g.f. sqrt(exp(x)*(2-exp(x))).
Original entry on oeis.org
1, 0, -1, -3, -10, -45, -271, -2058, -18775, -199335, -2410516, -32683563, -490870315, -8087188200, -144994236661, -2810079139143, -58536519252130, -1304198088413265, -30946462816602331, -779104979758256298, -20742005411397108595, -582214473250983046155, -17184302765073000634276
Offset: 0
-
m = 22; Range[0, m]! * CoefficientList[Series[Sqrt[Exp[x]*(2 - Exp[x])], {x, 0, m}], x] (* Amiram Eldar, Oct 19 2021 *)
-
my(x='x+O('x^25)); Vec(serlaplace(sqrt(exp(x)*(2-exp(x)))))
A343482
Expansion of the e.g.f. sqrt(-1 + 2 / (1 - x) / exp(x)).
Original entry on oeis.org
1, 0, 1, 2, 6, 24, 135, 930, 7105, 59192, 549360, 5746080, 66713361, 839528052, 11308954657, 163038260294, 2520332282910, 41640324943968, 730119174449151, 13507292654421390, 263004450921933817, 5385277610047242620, 115775314245285797256, 2606072891349667903152, 61248210450060537498321
Offset: 0
sqrt(-1+2/(1-x)/exp(x)) = 1 + x^2/2! + 2*x^3/3! + 6*x^4/4! + 24*x^5/5! + 135*x^6/6! + 930*x^7/7! + 7105*x^8/8! + 59192*x^9/9! + ...
a(23) = Sum_{k=1..11} (-1)^(k-1)*A014304(k-1)*A008306(23,k) = 2606072891349667903152.
For k=1, (-1)^(1-1)*A014304(1-1)*A008306(23,1) == -1 (mod 23), because A014304(0) = 1 and A008306(23,1) = (23-1)!
For k>=2, (-1)^(k-1)*A014304(k-1)*A008306(23,k) == 0 (mod 23), because A008306(23,k) == 0 (mod 23), result a(23) == -1 (mod 23).
a(18) = Sum_{k=1..9} (-1)^(k-1)*A014304(k-1)*A008306(18,k) = 730119174449151.
a(18) == 0 (mod (18-1)), because for k >= 1, A008306(18,k) == 0 (mod 17).
-
A014304:= proc(n) option remember; `if`(n=0, 1, (-1)^n + add(binomial(n,k)*A014304(k)* A014304(n-k-1), k=0..n-1)) end:
A008306 := proc(n, k): if k=1 then (n-1)! ; elif n<=2*k-1 then 0; else (n-1)*procname(n-1, k)+(n-1)*procname(n-2, k-1) ; end if; end proc:
a:= n-> add(((-1)^(k-1)*A014304(k-1)*A008306(n,k)), k=1..iquo(n,2)):a(0):=1 ; seq(a(n), n=0..24);
# second program:
a := series(sqrt(-1+2/(1-x)/exp(x)), x=0, 25):seq(n!*coeff(a, x, n), n=0..24);
-
CoefficientList[Series[Sqrt[-1+2/(1-x)/E^x], {x, 0, 24}], x] * Range[0, 24]!
-
my(x='x+O('x^30)); Vec(serlaplace(sqrt(-1 + 2 / (1 - x) / exp(x)))) \\ Michel Marcus, Jul 06 2021
A280939
Expansion of e.g.f.: 2*sinh(x/2) / sqrt(2 - exp(x)).
Original entry on oeis.org
1, 1, 4, 19, 121, 946, 8779, 94249, 1148746, 15667741, 236396029, 3909054304, 70297156021, 1365847397461, 28512838809004, 636437585232559, 15125744356058821, 381337518656892106, 10164860714961807079, 285635253778131491389, 8438962752941736017146, 261512261403795336646801, 8481542634943973943517129, 287325556922319462615912544, 10148442521179099638781764121
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 19*x^4/4! + 121*x^5/5! + 946*x^6/6! + 8779*x^7/7! + 94249*x^8/8! + 1148746*x^9/9! + 15667741*x^10/10! + 236396029*x^11/11! + 3909054304*x^12/12! + ...
-
m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(2*Sinh(x/2)/Sqrt(2 - Exp(x)))); [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 10 2018
-
seq(coeff(series(factorial(n)*(2*sinh(x/2)/sqrt(2-exp(x))),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Oct 11 2018
-
Rest[With[{nmax = 50}, CoefficientList[Series[2*Sinh[x/2]/Sqrt[2 - Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Oct 10 2018 *)
-
{a(n) = my(X=x+x*O(x^n)); n!*polcoeff( 2*sinh(X/2) / sqrt(2 - exp(X)),n)}
for(n=1,20,print1(a(n),", "))
A309473
a(n) = (-1)^n + Sum_{k=0..n-1} binomial(n-1,k) * a(k) * a(n-k-1).
Original entry on oeis.org
1, 0, 1, 1, 3, 11, 43, 195, 1063, 6395, 42371, 311883, 2501159, 21672355, 202544323, 2028522067, 21658255431, 245738583307, 2952508103651, 37440976938875, 499785548010759, 7005210659040979, 102862231664567651, 1579045889274408259, 25294106622048460903
Offset: 0
-
a[n_] := a[n] = (-1)^n + Sum[Binomial[n - 1, k] a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]
terms = 24; A[] = 1; Do[A[x] = Normal[Integrate[A[x]^2 - Exp[-x], x] + O[x]^(terms + 1)], terms]; CoefficientList[A[x], x] Range[0, terms]!
Showing 1-5 of 5 results.
Comments