cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014342 Convolution of primes with themselves.

Original entry on oeis.org

4, 12, 29, 58, 111, 188, 305, 462, 679, 968, 1337, 1806, 2391, 3104, 3953, 4978, 6175, 7568, 9185, 11030, 13143, 15516, 18177, 21150, 24471, 28152, 32197, 36678, 41543, 46828, 52621, 58874, 65659, 73000, 80949, 89462, 98631, 108396, 118869, 130102, 142071
Offset: 1

Views

Author

Keywords

Examples

			a(2)=12 because a(2) = prime(1)*prime(2) + prime(2)*prime(1) = 2*3 + 3*2 = 12.
		

Crossrefs

Column k=2 of A340991.

Programs

  • Haskell
    a014342 n = a014342_list !! (n-1)
    a014342_list= f (tail a000040_list) [head a000040_list] 1 where
       f (p:ps) qs k = sum (zipWith (*) qs $ reverse qs) :
                       f ps (p : qs) (k + 1)
    -- Reinhard Zumkeller, Apr 07 2014, Mar 08 2012
    
  • Magma
    [&+[NthPrime(n-i+1)*NthPrime(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 12 2016
    
  • Maple
    A014342:=n->add(ithprime(i)*ithprime(n+1-i), i=1..n): seq(A014342(n), n=1..50); # Wesley Ivan Hurt, Dec 14 2016
  • Mathematica
    Table[Sum[Prime[i] Prime[n + 1 - i], {i, n}], {n, 40}] (* Michael De Vlieger, Dec 13 2016 *)
    Table[With[{p=Prime[Range[n]]},ListConvolve[p,p]],{n,40}]//Flatten (* Harvey P. Dale, May 03 2018 *)
  • PARI
    {m=40;u=vector(m,x,prime(x));for(n=1,m,v=vecextract(u,concat("1..",n)); w=vector(n,x,u[n+1-x]);print1(v*w~,","))} \\ Klaus Brockhaus, Apr 28 2004
    
  • Python
    from numpy import convolve
    from sympy import prime, primerange
    def aupton(terms):
      p = list(primerange(2, prime(terms)+1))
      return list(convolve(p, p))[:terms]
    print(aupton(41)) # Michael S. Branicky, Apr 12 2021

Formula

a(n) = Sum_{i=1..n} prime(i) * prime(n+1-i), where prime(i) is the i-th prime.
G.f.: (b(x)^2)/x, where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 13 2016

Extensions

More terms from Felix Goldberg (felixg(AT)tx.technion.ac.il), Feb 01 2001