A014342 Convolution of primes with themselves.
4, 12, 29, 58, 111, 188, 305, 462, 679, 968, 1337, 1806, 2391, 3104, 3953, 4978, 6175, 7568, 9185, 11030, 13143, 15516, 18177, 21150, 24471, 28152, 32197, 36678, 41543, 46828, 52621, 58874, 65659, 73000, 80949, 89462, 98631, 108396, 118869, 130102, 142071
Offset: 1
Examples
a(2)=12 because a(2) = prime(1)*prime(2) + prime(2)*prime(1) = 2*3 + 3*2 = 12.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a014342 n = a014342_list !! (n-1) a014342_list= f (tail a000040_list) [head a000040_list] 1 where f (p:ps) qs k = sum (zipWith (*) qs $ reverse qs) : f ps (p : qs) (k + 1) -- Reinhard Zumkeller, Apr 07 2014, Mar 08 2012
-
Magma
[&+[NthPrime(n-i+1)*NthPrime(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 12 2016
-
Maple
A014342:=n->add(ithprime(i)*ithprime(n+1-i), i=1..n): seq(A014342(n), n=1..50); # Wesley Ivan Hurt, Dec 14 2016
-
Mathematica
Table[Sum[Prime[i] Prime[n + 1 - i], {i, n}], {n, 40}] (* Michael De Vlieger, Dec 13 2016 *) Table[With[{p=Prime[Range[n]]},ListConvolve[p,p]],{n,40}]//Flatten (* Harvey P. Dale, May 03 2018 *)
-
PARI
{m=40;u=vector(m,x,prime(x));for(n=1,m,v=vecextract(u,concat("1..",n)); w=vector(n,x,u[n+1-x]);print1(v*w~,","))} \\ Klaus Brockhaus, Apr 28 2004
-
Python
from numpy import convolve from sympy import prime, primerange def aupton(terms): p = list(primerange(2, prime(terms)+1)) return list(convolve(p, p))[:terms] print(aupton(41)) # Michael S. Branicky, Apr 12 2021
Formula
a(n) = Sum_{i=1..n} prime(i) * prime(n+1-i), where prime(i) is the i-th prime.
G.f.: (b(x)^2)/x, where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 13 2016
Extensions
More terms from Felix Goldberg (felixg(AT)tx.technion.ac.il), Feb 01 2001