A014442 Largest prime factor of n^2 + 1.
2, 5, 5, 17, 13, 37, 5, 13, 41, 101, 61, 29, 17, 197, 113, 257, 29, 13, 181, 401, 17, 97, 53, 577, 313, 677, 73, 157, 421, 53, 37, 41, 109, 89, 613, 1297, 137, 17, 761, 1601, 29, 353, 37, 149, 1013, 73, 17, 461, 1201, 61, 1301, 541, 281, 2917, 89, 3137, 13, 673
Offset: 1
References
- A. A. Markov, Über die Primteiler der Zahlen von der Form 1+4x^2, Bulletin de l'Académie impériale des sciences de St.-Pétersbourg 3 (1895), pp. 55-59.
- H. Rademacher, Lectures on Elementary Number Theory, pp. 33-38.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- S. Chowla, The greatest prime factor of x^2 + 1, J. London Math. Soc. 10 (1935), 117--120.
- J. M. Deshouillers and H. Iwaniec, On the greatest prime factor of n^2+1, Annales de l'institut Fourier, 32 no. 4 (1982), p. 1-11.
- Christopher Hooley, On the greatest prime factor of a quadratic polynomial, Acta Mathematica 117 (1967), pp. 281-299.
- Jori Merikoski, Largest prime factor of n^2+1, arXiv:1908.08816 [math.NT], 2019.
- R. Ozols, Problem 11831, The American Mathematical Monthly, Vol. 122, No. 4 (April 2015), page 390
- A. Schinzel, On two theorems of Gelfond and some of their applications, Acta Arith. 13 (1967), 177--236.
- Carl Størmer, Quelques théorèmes sur l'équation de Pell x^2 - Dy^2 = +-1 et leurs applications (in French), Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl. I (2), 48 pp.
Crossrefs
Programs
-
GAP
List([1..60],n->Reversed(Factors(n^2+1))[1]); # Muniru A Asiru, Oct 27 2018
-
Magma
[Maximum(PrimeDivisors(n^2+1)): n in [1..60]]; // Vincenzo Librandi, Jun 17 2015
-
Maple
seq(max(numtheory:-factorset(n^2+1)),n=1..100) ; # Robert Israel, Jun 11 2015
-
Mathematica
Table[FactorInteger[n^2+1,FactorComplete->True][[ -1,1]],{n,5!}] ..and/or.. Table[Last[Table[ #[[1]]]&/@FactorInteger[n^2+1]],{n,5!}] ..and/or.. PrimeFactors[n_]:=Flatten[Table[ #[[1]],{1}]&/@FactorInteger[n]]; Table[PrimeFactors[n^2+1][[ -1]],{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *) a[ n_] := If[ n < 1, 0, FactorInteger[n n + 1][[All, 1]] // Last]; (* Michael Somos, May 11 2015 *) Table[FactorInteger[n^2 + 1][[-1, 1]], {n, 80}] (* Vincenzo Librandi, Jun 17 2015 *)
-
PARI
largeasqp1(m) = { for(a=1,m, y=a^2 + 1; f = factor(y); v = component(f,1); v1 = v[length(v)]; print1(v1",") ) } \\ Cino Hilliard, Jun 12 2004
-
PARI
{a(n) = if( n<1, 0, Vecrev(factor(n*n + 1)[,1])[1])}; /* Michael Somos, May 11 2015 */
Formula
a(n) = A006530(1+n^2). - R. J. Mathar, Jan 28 2017
Comments