cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A089121 Duplicate of A014442.

Original entry on oeis.org

2, 5, 5, 17, 13, 37, 5, 13, 41, 101, 61, 29, 17, 197, 113, 257, 29, 13, 181, 401, 17, 97
Offset: 1

Views

Author

Keywords

A085722 Numbers k such that k^2 + 1 is a semiprime.

Original entry on oeis.org

3, 5, 8, 9, 11, 12, 15, 19, 22, 25, 28, 29, 30, 34, 35, 39, 42, 44, 45, 46, 48, 49, 50, 51, 52, 58, 59, 60, 61, 62, 64, 65, 69, 71, 76, 78, 79, 80, 85, 86, 88, 92, 95, 96, 100, 101, 102, 104, 106, 108, 114, 121, 131, 136, 139, 140, 141, 144, 145, 152, 154, 158, 159, 164
Offset: 1

Views

Author

Jason Earls, Jul 20 2003

Keywords

Comments

Corresponding semiprimes k^2+1 are in A144255.
Solutions to the equation: A000005(1+k^2) = 4. - Enrique Pérez Herrero, May 03 2012

Crossrefs

Programs

  • Mathematica
    lst={}; Do[If[Plus@@Last/@FactorInteger[n^2+1]==2, AppendTo[lst,n]], {n,0,200}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 24 2009 *)
    Select[Range[200],PrimeOmega[#^2+1]==2&] (* Harvey P. Dale, Feb 28 2013 *)
  • PARI
    select(vector(50,n,n),n->bigomega(n^2+1)==2)
    \\ Zak Seidov, Feb 25 2011

Formula

A085722 = A193432^-1({2}). - M. F. Hasler, Mar 11 2012

A076605 Largest prime divisor of n^2 - 1.

Original entry on oeis.org

3, 2, 5, 3, 7, 3, 7, 5, 11, 5, 13, 7, 13, 7, 17, 3, 19, 5, 19, 11, 23, 11, 23, 13, 5, 13, 29, 7, 31, 5, 31, 17, 11, 17, 37, 19, 37, 19, 41, 7, 43, 11, 43, 23, 47, 23, 47, 5, 17, 13, 53, 13, 53, 7, 19, 29, 59, 29, 61, 31, 61, 31, 13, 11, 67, 17, 67, 17, 71, 7
Offset: 2

Views

Author

Jon Perry, Oct 21 2002

Keywords

Comments

Also the largest prime that divides either n-1 or n+1.
Størmer shows that a(n) tends to infinity with n. Schinzel shows that lim inf a(n)/log log n >= 2 and, using lower bounds for linear forms of logarithms, this inequality can be generalized for general quadratic polynomials, with 2 replaced by 4/7 for irreducible ones and 2/7 for reducible ones. - Tomohiro Yamada, Apr 15 2017

Examples

			n=11: the largest prime factor of 10 and 12 is 5, therefore a(11) = 5.
		

References

  • K. Mahler, "Uber den grossten Primteiler spezieller Polynome zweiten Grades", Arch. Math. Naturvid. B.41, 1935, pp. 3 - 26.

Crossrefs

Cf. A006530, A037464, A074399 (bisections).
Cf. A175607.
Cf. A014442 (largest prime divisor of n^2 + 1). - Tomohiro Yamada, Apr 15 2017

Programs

  • Mathematica
    Table[ Last[ Table[ # [[1]]] & /@ FactorInteger[n^2 - 1]], {n, 2, 80}]
  • PARI
    for (n=3,100, print1(","max(factor(n-1)[,1][length(factor(n-1)[,1])],factor(n+1)[,1][length(factor(n+1)[,1])])))

A089120 Smallest prime factor of n^2 + 1.

Original entry on oeis.org

2, 5, 2, 17, 2, 37, 2, 5, 2, 101, 2, 5, 2, 197, 2, 257, 2, 5, 2, 401, 2, 5, 2, 577, 2, 677, 2, 5, 2, 17, 2, 5, 2, 13, 2, 1297, 2, 5, 2, 1601, 2, 5, 2, 13, 2, 29, 2, 5, 2, 41, 2, 5, 2, 2917, 2, 3137, 2, 5, 2, 13, 2, 5, 2, 17, 2, 4357, 2, 5, 2, 13, 2, 5, 2, 5477, 2, 53, 2, 5, 2, 37, 2, 5, 2
Offset: 1

Views

Author

Cino Hilliard, Dec 05 2003

Keywords

Comments

This includes A002496, primes that are of the form n^2+1.
Note that a(n) is the smallest prime p such that n^(p+1) == -1 (mod p). - Thomas Ordowski, Nov 08 2019

References

  • H. Rademacher, Lectures on Elementary Number Theory, pp. 33-38.

Crossrefs

Programs

  • Magma
    [Min(PrimeDivisors(n^2+1)):n in [1..100]]; // Marius A. Burtea, Nov 13 2019
  • Mathematica
    Array[FactorInteger[#^2 + 1][[1, 1]] &, {83}] (* Michael De Vlieger, Sep 08 2015 *)
  • PARI
    smallasqp1(m) = { for(a=1,m, y=a^2 + 1; f = factor(y); v = component(f,1); v1 = v[length(v)]; print1(v[1]",") ) }
    
  • PARI
    A089120(n)=factor(n^2+1)[1,1]  \\ M. F. Hasler, Mar 11 2012
    

Formula

a(2k+1)=2; a(10k +/- 2)=5, else a(26k +/- 8)=13, else a(34k +/- 4)=17, else a(58k +/- 12)=29, else a(74k +/- 6)=37,... - M. F. Hasler, Mar 11 2012
A089120(n) = 2 if n is odd, else A089120(n) = min { A002144(k) | n = +/- A209874(k) (mod 2*A002144(k)) }.

A081256 Greatest prime factor of n^3 + 1.

Original entry on oeis.org

2, 3, 7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 7, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 19, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
Offset: 1

Views

Author

Jan Fricke, Mar 14 2003

Keywords

Comments

Record values appear to match the terms of A002383 for n>1. - Bill McEachen, Oct 18 2023

Crossrefs

Programs

  • Maple
    A081256 := proc(n)
        A006530(n^3+1) ;
    end proc:
    seq(A081256(n),n=1..20) ; # R. J. Mathar, Feb 13 2014
  • Mathematica
    Table[Max[Transpose[FactorInteger[n^3 + 1]][[1]]], {n, 25}]
  • PARI
    a(n)=my(f=factor(n^3+1)); f[#f~,1] \\ Charles R Greathouse IV, Mar 08 2017
    
  • PARI
    A081256(n)=vecmax(factor(n^3+1)[,1]) \\ It seems slightly slower to get the last element using ...[-1..-1][1]. - M. F. Hasler, Jun 15 2018

Formula

a(n) = A006530(A001093(n)). - M. F. Hasler, Jun 13 2018
a(n) >= 31 for n >= 70 (Buchmann et al., 1991). - Amiram Eldar, Oct 25 2024

Extensions

More terms from Harvey P. Dale, Mar 22 2003
More terms from Hugo Pfoertner, Jun 20 2004

A209874 Least m > 0 such that the prime p=A002313(n+1) divides m^2+1.

Original entry on oeis.org

1, 2, 8, 4, 12, 6, 32, 30, 50, 46, 34, 22, 10, 76, 98, 100, 44, 28, 80, 162, 112, 14, 122, 144, 64, 16, 82, 60, 228, 138, 288, 114, 148, 136, 42, 104, 274, 334, 20, 266, 392, 254, 382, 348, 48, 208, 286, 52, 118, 86, 24, 516, 476, 578, 194, 154, 504, 106, 58, 26, 566, 96, 380, 670, 722, 62, 456, 582, 318, 526, 246, 520, 650, 726, 494, 324
Offset: 0

Views

Author

M. F. Hasler, Mar 11 2012

Keywords

Comments

This yields the prime factors of numbers of the form N^2+1, cf. formula in A089120: For n=0,1,2,... check whether N = +/- a(n) [mod 2*A002313(n+1)], if so, then A002313(n+1) is a prime factor of N^2+1.
Obviously, p then divides (2kp +/- a(n))^2+1 for all k >=0 ; in particular it will be the least prime factor of such numbers if there is no earlier match.
Alternatively one could deal separately with the case of odd N, for which p=2 divides N^2+1, and even N, for which only Pythagorean primes A002144(n)=A002313(n+1) can be prime factors of N^2+1.

Crossrefs

Programs

  • PARI
    A209874(n)=if( n, 2*lift(sqrt(Mod(-1, A002144[n])/4)), 1)
    
  • PARI
    /* for illustrative purpose: a(n) is the smaller of the 2 possible remainders mod 2*p of numbers N such that N^2+1 has p as smallest prime factor */ forprime( p=1,199, p>2 & p%4 != 1 & next; my(c=[]); for(i=1,9e9, factor(i^2+1)[1,1]==p |next; c=vecsort(concat(c,i%(2*p)),,8); #c==1 || print1(","c[1]) || break))

Formula

For n>0, A209874(n) = 2*sqrt(-1/4 mod A002144(n)), where sqrt(a mod p) stands for the positive x < p/2 such that x^2=a in Z/pZ.
A209874(n) = A209877(n)*2 for n>0.

A096172 Largest prime factor of n^4 + 1.

Original entry on oeis.org

2, 17, 41, 257, 313, 1297, 1201, 241, 193, 137, 7321, 233, 14281, 937, 1489, 65537, 41761, 929, 3833, 160001, 97241, 3209, 139921, 331777, 11489, 26881, 6481, 614657, 353641, 3361, 1129, 61681, 6113, 1336337, 750313, 98801, 10529, 50857, 1156721
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Mabkhout shows that a(n) >= 137 for n > 3. - Charles R Greathouse IV, Apr 07 2014

Examples

			a(1)=2 because 1^4 + 1 = 2;
a(2)=17: 2^4 + 1 = 17;
a(8)=241: 8^4 + 1 = 4097 = 17*241.
		

References

  • Mustapha Mabkhout, Minoration de P(x^4+1), Rendiconti del Seminario della Facoltà di Scienze dell'Università di Cagliari 63:2 (1993), pp. 135-148.

Crossrefs

Programs

Formula

a(n) = A006530(1+n^4) = A014442(n^2). - R. J. Mathar, Jan 28 2017
From Amiram Eldar, Oct 28 2024: (Start)
a(n) > 113 for n > 3 (Mureddu, 1986-1987).
a(n) >= 233 for n >= 11 (Luca, 2004). (End)

A031439 a(0) = 1, a(n) is the greatest prime factor of a(n-1)^2+1 for n > 0.

Original entry on oeis.org

1, 2, 5, 13, 17, 29, 421, 401, 53, 281, 3037, 70949, 1713329, 1467748131121, 37142837524296348426149, 101591133424866642486477019709, 1650979973845742266714536305651329, 78343914631785958284737, 4029445531112797145738746391569, 350080544438648120162733678636001, 26208090024628793745288451837610346882122253572537, 4717815978577117335515270825550279551117660519482308365269206484133871485221
Offset: 0

Views

Author

Keywords

Comments

Does this sequence grow indefinitely, or does it cycle? - Franklin T. Adams-Watters, Oct 02 2006
All a(n) except a(0) = 1 belong to A014442(n) = {2, 5, 5, 17, 13, 37, 5, 13, 41, 101, ...} Largest prime factor of n^2 + 1. All a(n) except a(0) = 1 belong to A002313(n) = {2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, ...} Primes congruent to 1 or 2 modulo 4; or, primes of form x^2+y^2; or, -1 is a square mod p. All a(n) except a(0) = 1 and a(1) = 2 are the Pythagorean primes A002144(n) = {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, ...} Primes of form 4n+1. - Alexander Adamchuk, Nov 05 2006
Essentially the same as A072268; A072268(n) = A031439(n-1)^2 + 1. - Charles R Greathouse IV, May 08 2009

Examples

			a(16)=A006530(a(15)^2+1)=
A006530(101591133424866642486477019709^2+1)=
A006530(10320758390549056348725939119133160378521185060950774444682)=
A006530(2*29*23201*4645528280970018601*1650979973845742266714536305651329)=
1650979973845742266714536305651329, factorization of A006530(a(15)^2+1) by Dario A. Alpern's program (see link).
		

Crossrefs

Cf. A002144 - Pythagorean primes: primes of form 4n+1; A002313 - Primes congruent to 1 or 2 modulo 4; A014442 - Largest prime factor of n^2 + 1.

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; a[0] = 1; a[n_] := a[n] = gpf[a[n - 1]^2 + 1]; Table[an = a[n]; Print[an]; an, {n, 0, 21}] (* Jean-François Alcover, Nov 04 2011 *)
    NestList[FactorInteger[#^2+1][[-1,1]]&,1,21] (* Harvey P. Dale, Jul 04 2013 *)
  • PARI
    gpf(n)=local(pf);pf=factor(n);pf[matsize(pf)[1],1] vector(20,i,r=if(i==1,1,gpf(r^2+1)))

Extensions

One more term from Vladeta Jovovic, Nov 26 2001
a(16) from Reinhard Zumkeller, Aug 07 2004
a(17)-a(21) from Richard FitzHugh (fitzhughrichard(AT)hotmail.com), Aug 12 2004

A256011 Integers n with the property that the largest prime factor of n^2 + 1 is less than n.

Original entry on oeis.org

7, 18, 21, 38, 41, 43, 47, 57, 68, 70, 72, 73, 83, 99, 111, 117, 119, 123, 128, 132, 133, 142, 157, 172, 173, 174, 182, 185, 191, 192, 193, 200, 211, 212, 216, 233, 237, 239, 242, 251, 253, 255, 265, 268, 273, 278, 293, 294, 302, 305, 307, 313, 319, 322, 327
Offset: 1

Views

Author

Michael Kaltman, May 31 2015

Keywords

Comments

Every Pythagorean prime, p, can be written as the sum of two positive integers, a and b, such that ab is congruent to 1 (mod p). Further: no number is the addend of two different primes, and the numbers that are NEVER addends are precisely the numbers in this list.
In particular: 5 = 2+3 and 2*3 = 6 == 1 (mod 5), 13 = 5+8 and 5*8 = 40 == 1 (mod 13), 17 = 4+13 and 4*13 = 52 == 1 (mod 17), 29 = 12+17 and 12*17 = 204 == 1 (mod 29), and so on.
Every integer greater than 1 is in exactly one of A002314, A152676, and the present sequence. - Michael Kaltman, May 11 2019

Examples

			7^2 + 1 = 50 = 2 * 5^2;
18^2 + 1 = 325 = 5^2 * 13;
21^2 + 1 = 442 = 2 * 13 * 17.
		

Crossrefs

Cf. A002144 (Pythagorean primes), A014442, A002314, A152676.

Programs

  • Magma
    [k:k in [1..330]| Max(PrimeDivisors(k^2+1)) lt k]; // Marius A. Burtea, Jul 27 2019
  • Maple
    select(n -> max(numtheory:-factorset(n^2+1))Robert Israel, Jun 09 2015
  • Mathematica
    Select[Range[10^4], FactorInteger [#^2 + 1][[-1, 1]] < # &] (* Giovanni Resta, Jun 09 2015 *)
  • PARI
    for(n=1,10^3,N=n^2+1;if(factor(N)[,1][omega(N)] < n,print1(n,", "))) \\ Derek Orr, Jun 08 2015
    
  • PARI
    is(n)=my(f=factor(n^2+1)[,1]); f[#f]Charles R Greathouse IV, Jun 09 2015
    

A240548 Greatest prime factor of n^5 + 1.

Original entry on oeis.org

2, 11, 61, 41, 521, 101, 191, 331, 1181, 9091, 13421, 19141, 2411, 101, 1531, 61681, 101, 9041, 2251, 152381, 185641, 224071, 211, 5791, 9161, 1021, 271, 53951, 401, 71261, 21821, 4051, 1151041, 259631, 132631, 6781, 1824841, 2031671, 41011, 20641, 4111, 23201
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Examples

			a(2) = 11 because 2^5 + 1 = 33 = 3 * 11.
a(3) = 61 because 3^5 + 1 = 244 = 2^2 * 61.
a(4) = 41 because 4^5 + 1 = 1025 = 5^2 * 41.
a(2272) = 2273 because 2272^5 + 1 = 11^2 * 311 * 491 * 1171 * 1231 * 2273.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^5 + 1][[-1, 1]], {n, 100}]
Showing 1-10 of 46 results. Next