A089121 Duplicate of A014442.
2, 5, 5, 17, 13, 37, 5, 13, 41, 101, 61, 29, 17, 197, 113, 257, 29, 13, 181, 401, 17, 97
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
lst={}; Do[If[Plus@@Last/@FactorInteger[n^2+1]==2, AppendTo[lst,n]], {n,0,200}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 24 2009 *) Select[Range[200],PrimeOmega[#^2+1]==2&] (* Harvey P. Dale, Feb 28 2013 *)
select(vector(50,n,n),n->bigomega(n^2+1)==2) \\ Zak Seidov, Feb 25 2011
n=11: the largest prime factor of 10 and 12 is 5, therefore a(11) = 5.
Table[ Last[ Table[ # [[1]]] & /@ FactorInteger[n^2 - 1]], {n, 2, 80}]
for (n=3,100, print1(","max(factor(n-1)[,1][length(factor(n-1)[,1])],factor(n+1)[,1][length(factor(n+1)[,1])])))
[Min(PrimeDivisors(n^2+1)):n in [1..100]]; // Marius A. Burtea, Nov 13 2019
Array[FactorInteger[#^2 + 1][[1, 1]] &, {83}] (* Michael De Vlieger, Sep 08 2015 *)
smallasqp1(m) = { for(a=1,m, y=a^2 + 1; f = factor(y); v = component(f,1); v1 = v[length(v)]; print1(v[1]",") ) }
A089120(n)=factor(n^2+1)[1,1] \\ M. F. Hasler, Mar 11 2012
A081256 := proc(n) A006530(n^3+1) ; end proc: seq(A081256(n),n=1..20) ; # R. J. Mathar, Feb 13 2014
Table[Max[Transpose[FactorInteger[n^3 + 1]][[1]]], {n, 25}]
a(n)=my(f=factor(n^3+1)); f[#f~,1] \\ Charles R Greathouse IV, Mar 08 2017
A081256(n)=vecmax(factor(n^3+1)[,1]) \\ It seems slightly slower to get the last element using ...[-1..-1][1]. - M. F. Hasler, Jun 15 2018
A209874(n)=if( n, 2*lift(sqrt(Mod(-1, A002144[n])/4)), 1)
/* for illustrative purpose: a(n) is the smaller of the 2 possible remainders mod 2*p of numbers N such that N^2+1 has p as smallest prime factor */ forprime( p=1,199, p>2 & p%4 != 1 & next; my(c=[]); for(i=1,9e9, factor(i^2+1)[1,1]==p |next; c=vecsort(concat(c,i%(2*p)),,8); #c==1 || print1(","c[1]) || break))
a(1)=2 because 1^4 + 1 = 2; a(2)=17: 2^4 + 1 = 17; a(8)=241: 8^4 + 1 = 4097 = 17*241.
FactorInteger[#^4+1][[-1,1]]&/@Range[40] (* Harvey P. Dale, Apr 30 2012 *)
a(n)=my(f=factor(n^4+1)[,1]); f[#f] \\ Charles R Greathouse IV, Apr 07 2014
a(16)=A006530(a(15)^2+1)= A006530(101591133424866642486477019709^2+1)= A006530(10320758390549056348725939119133160378521185060950774444682)= A006530(2*29*23201*4645528280970018601*1650979973845742266714536305651329)= 1650979973845742266714536305651329, factorization of A006530(a(15)^2+1) by Dario A. Alpern's program (see link).
gpf[n_] := FactorInteger[n][[-1, 1]]; a[0] = 1; a[n_] := a[n] = gpf[a[n - 1]^2 + 1]; Table[an = a[n]; Print[an]; an, {n, 0, 21}] (* Jean-François Alcover, Nov 04 2011 *) NestList[FactorInteger[#^2+1][[-1,1]]&,1,21] (* Harvey P. Dale, Jul 04 2013 *)
gpf(n)=local(pf);pf=factor(n);pf[matsize(pf)[1],1] vector(20,i,r=if(i==1,1,gpf(r^2+1)))
7^2 + 1 = 50 = 2 * 5^2; 18^2 + 1 = 325 = 5^2 * 13; 21^2 + 1 = 442 = 2 * 13 * 17.
[k:k in [1..330]| Max(PrimeDivisors(k^2+1)) lt k]; // Marius A. Burtea, Jul 27 2019
select(n -> max(numtheory:-factorset(n^2+1))Robert Israel, Jun 09 2015
Select[Range[10^4], FactorInteger [#^2 + 1][[-1, 1]] < # &] (* Giovanni Resta, Jun 09 2015 *)
for(n=1,10^3,N=n^2+1;if(factor(N)[,1][omega(N)] < n,print1(n,", "))) \\ Derek Orr, Jun 08 2015
is(n)=my(f=factor(n^2+1)[,1]); f[#f]Charles R Greathouse IV, Jun 09 2015
a(2) = 11 because 2^5 + 1 = 33 = 3 * 11. a(3) = 61 because 3^5 + 1 = 244 = 2^2 * 61. a(4) = 41 because 4^5 + 1 = 1025 = 5^2 * 41. a(2272) = 2273 because 2272^5 + 1 = 11^2 * 311 * 491 * 1171 * 1231 * 2273.
Table[FactorInteger[n^5 + 1][[-1, 1]], {n, 100}]
Comments