A072268 a(0)=1; a(n+1) = 1 + f(a(n))^2, where f(x) is the largest prime factor of x (A006530).
1, 2, 5, 26, 170, 290, 842, 177242, 160802, 2810, 78962, 9223370, 5033760602, 2935496262242, 2154284576409188208716642, 1379590379356276893461978662419832989306970202, 10320758390549056348725939119133160378521185060950774444682
Offset: 0
Keywords
Examples
Given a(5)=290: a(6) = 1 + lpf(a(5))^2 = 1 + lpf(290)^2 = 1 + 29^2 = 842.
Crossrefs
Cf. A031439.
Programs
-
Maple
with(numtheory): a[0]:=1: a[1]:=2: for n from 2 to 20 do b:=factorset(a[n-1]): a[n]:=1+op(nops(b),b)^2: od: seq(a[n],n=0..20); # Emeric Deutsch, Feb 05 2006
-
Mathematica
NestList[1+FactorInteger[#][[-1,1]]^2&,1,17] (* Harvey P. Dale, Feb 01 2022 *)
Extensions
More terms from Emeric Deutsch, Feb 05 2006
a(16) corrected by T. D. Noe, Nov 26 2007
Comments