cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A064605 Numbers k such that A064602(k) is divisible by k.

Original entry on oeis.org

1, 2, 8, 74, 146, 150, 158, 307, 526, 541, 16157, 20289, 271343, 953614, 1002122, 2233204, 3015123, 15988923, 48033767, 85110518238
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605, A064606, A064607, A064610, A064611, A048290, A062982, A045345.
a(20) > 3*10^10. - Donovan Johnson, Aug 31 2012
a(21) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Summing divisor-square sums for j = 1..8 gives 1+5+10+21+26+50+50+85 = 248, which is divisible by 8, so 8 is a term and the integer quotient is 31.
		

Crossrefs

Programs

  • Mathematica
    k = 1; lst = {}; s = 0; While[k < 1000000001, s = s + DivisorSigma[2, k]; If[ Mod[s, k] == 0, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G. Wilson v, Apr 25 2011 *)

Formula

(Sum_{j=1..k} sigma_2(j)) mod k = A064602(k) mod k = 0.

Extensions

a(15)-a(19) from Donovan Johnson, Jun 21 2010
a(20) from Amiram Eldar, Jan 18 2024

A064610 Places k where A064608(k) (partial sums of unitary tau) is divisible by k.

Original entry on oeis.org

1, 35, 37, 1015, 27417, 27421, 27449, 27453, 19774739, 530743781, 530743799, 530743807, 530743813
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

The corresponding quotients are 1, 3, 3, 5, 7, 7, 7, 7, 11, 13, 13, 13, 13, ...
a(14) > 7.5*10^10, if it exists. - Amiram Eldar, Jun 04 2021

Examples

			For n = 37, the sum A064608(37) = 1+2+2+2+2+4+2+...+4+4+4+2 = 111 = 3*37, so 37 is in the sequence.
		

Crossrefs

Cf. A064608.
Analogous "integer-mean" sequences for various arithmetical functions are A050226, A056650, A064605, A064606, A064607, A048290, A063986, A063971, A064911, A062982, A045345.

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = s[n - 1] + 2^PrimeNu[n]; Select[Range[30000], Divisible[s[#], #] &] (* Amiram Eldar, Jun 04 2021 *)

Formula

{n: A064608(n) == 0 (mod n)}.

Extensions

a(10)-a(13) from Donovan Johnson, Jul 20 2012

A064607 Numbers k such that A064604(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 151, 257, 1823, 3048, 5588, 6875, 7201, 8973, 24099, 5249801, 9177919, 18926164, 70079434, 78647747, 705686794, 2530414370, 3557744074, 25364328389, 32487653727, 66843959963
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
a(19) > 2*10^9. - Donovan Johnson, Jun 21 2010
a(24) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Adding 4th-power divisor-sums for j = 1..7 gives 1+17+82+273+626+1394+2402 = 4795 which is divisible by 7, so 7 is a term and the integer quotient is 655.
		

Crossrefs

Programs

  • Mathematica
    k = 1; lst = {}; s = 0; While[k < 1000000001, s = s + DivisorSigma[4, k]; If[ Mod[s, k] == 0, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G.Wilson v, Aug 25 2011 *)

Formula

(Sum_{j=1..k} sigma_4(j)) mod k = A064604(k) mod k = 0.

Extensions

a(13)-a(18) from Donovan Johnson, Jun 21 2010
a(19)-a(23) from Amiram Eldar, Jan 18 2024

A031439 a(0) = 1, a(n) is the greatest prime factor of a(n-1)^2+1 for n > 0.

Original entry on oeis.org

1, 2, 5, 13, 17, 29, 421, 401, 53, 281, 3037, 70949, 1713329, 1467748131121, 37142837524296348426149, 101591133424866642486477019709, 1650979973845742266714536305651329, 78343914631785958284737, 4029445531112797145738746391569, 350080544438648120162733678636001, 26208090024628793745288451837610346882122253572537, 4717815978577117335515270825550279551117660519482308365269206484133871485221
Offset: 0

Views

Author

Keywords

Comments

Does this sequence grow indefinitely, or does it cycle? - Franklin T. Adams-Watters, Oct 02 2006
All a(n) except a(0) = 1 belong to A014442(n) = {2, 5, 5, 17, 13, 37, 5, 13, 41, 101, ...} Largest prime factor of n^2 + 1. All a(n) except a(0) = 1 belong to A002313(n) = {2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, ...} Primes congruent to 1 or 2 modulo 4; or, primes of form x^2+y^2; or, -1 is a square mod p. All a(n) except a(0) = 1 and a(1) = 2 are the Pythagorean primes A002144(n) = {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, ...} Primes of form 4n+1. - Alexander Adamchuk, Nov 05 2006
Essentially the same as A072268; A072268(n) = A031439(n-1)^2 + 1. - Charles R Greathouse IV, May 08 2009

Examples

			a(16)=A006530(a(15)^2+1)=
A006530(101591133424866642486477019709^2+1)=
A006530(10320758390549056348725939119133160378521185060950774444682)=
A006530(2*29*23201*4645528280970018601*1650979973845742266714536305651329)=
1650979973845742266714536305651329, factorization of A006530(a(15)^2+1) by Dario A. Alpern's program (see link).
		

Crossrefs

Cf. A002144 - Pythagorean primes: primes of form 4n+1; A002313 - Primes congruent to 1 or 2 modulo 4; A014442 - Largest prime factor of n^2 + 1.

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; a[0] = 1; a[n_] := a[n] = gpf[a[n - 1]^2 + 1]; Table[an = a[n]; Print[an]; an, {n, 0, 21}] (* Jean-François Alcover, Nov 04 2011 *)
    NestList[FactorInteger[#^2+1][[-1,1]]&,1,21] (* Harvey P. Dale, Jul 04 2013 *)
  • PARI
    gpf(n)=local(pf);pf=factor(n);pf[matsize(pf)[1],1] vector(20,i,r=if(i==1,1,gpf(r^2+1)))

Extensions

One more term from Vladeta Jovovic, Nov 26 2001
a(16) from Reinhard Zumkeller, Aug 07 2004
a(17)-a(21) from Richard FitzHugh (fitzhughrichard(AT)hotmail.com), Aug 12 2004

A064612 Partial sum of bigomega is divisible by n, where bigomega(n)=A001222(n) and summatory-bigomega(n)=A022559(n).

Original entry on oeis.org

1, 4, 5, 2178, 416417176, 416417184, 416417185, 416417186, 416417194, 416417204, 416417206, 416417208, 416417213, 416417214, 416417231, 416417271, 416417318, 416417319, 416417326, 416417335, 416417336, 416417338, 416417339, 416417374
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
Partial sums of A001222, similarly to summatory A001221 increases like loglog(n), explaining small quotients.
a(25) > 10^13. - Giovanni Resta, Apr 25 2017

Examples

			Sum of bigomega values from 1 to 5 is: 0+0+1+1+2+1=5, which is divisible by n=5, so 5 is here, with quotient=1. For the last value,2178,below 1000000 the quotient is only 3.
		

Crossrefs

Formula

Mod[A022559(n), n]=0

Extensions

a(5)-a(24) from Donovan Johnson, Nov 15 2009

A064606 Numbers k such that A064603(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 45, 184, 210, 267, 732, 1282, 3487, 98374, 137620, 159597, 645174, 3949726, 7867343, 13215333, 14153570, 14262845, 317186286, 337222295, 2788845412, 10937683400, 72836157215, 95250594634
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
a(22) > 2*10^9. - Donovan Johnson, Jun 21 2010
a(26) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Adding divisor-cube sums for j = 1..7 gives 1+9+28+73+126+252+344 = 833 = 7*119, which is divisible by 7, so 7 is a term and the integer quotient is 119.
		

Crossrefs

Programs

Formula

(Sum_{j=1..k} sigma_3(j)) mod k = A064603(k) mod k = 0.

Extensions

a(15)-a(21) from Donovan Johnson, Jun 21 2010
a(22)-a(25) from Amiram Eldar, Jan 18 2024
Showing 1-6 of 6 results.