A014480 Expansion of g.f. (1+2*x)/(1-2*x)^2.
1, 6, 20, 56, 144, 352, 832, 1920, 4352, 9728, 21504, 47104, 102400, 221184, 475136, 1015808, 2162688, 4587520, 9699328, 20447232, 42991616, 90177536, 188743680, 394264576, 822083584, 1711276032, 3556769792, 7381975040, 15300820992, 31675383808, 65498251264
Offset: 0
Examples
(1 + 2*x)/(1-2*x)^2 = 1 + 6*x + 20*x^2 + 56*x^3 + 144*x^4 + 352*x^5 + 832*x^6 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- David Bailey, Peter Borwein, and Simon Plouffe, On the rapid computation of various polylogarithmic constants, in: L. Berggren, J. Borwein, and P. Borwein (eds.), Pi: A Source Book, Springer, New York, NY, 2000.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Haskell
a014480 n = a014480_list !! n a014480_list = 1 : 6 : map (* 4) (zipWith (-) (tail a014480_list) a014480_list) -- Reinhard Zumkeller, Jan 22 2012
-
Magma
[2^n*(2*n + 1): n in [0..35]]; // Vincenzo Librandi, Oct 20 2014
-
Maple
a:=n-> sum(2^n*n^binomial(j,n)/2,j=1..n): seq(a(n),n=1..29); # Zerinvary Lajos, Apr 18 2009
-
Mathematica
CoefficientList[ Series[(1 + 2*x)/(1 - 2*x)^2, {x, 0, 28}], x] LinearRecurrence[{4, -4}, {1, 6}, 29] (* Robert G. Wilson v, Dec 26 2012 *) Table[2^n (2*n + 1), {n, 0, 28}] (* Fred Daniel Kline, Oct 20 2014 *)
-
PARI
Vec((1+2*x)/(1-2*x)^2+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
Formula
a(n) = (2n+1)*2^n = 4a(n-1)-4a(n-2) = 4*A052951(n-1) = a(n-1)+A052951(n) = a(n-1)*(2+4/(2n-1)) = A054582(n, n). - Henry Bottomley, May 16 2001
E.g.f.: x*cosh(sqrt(2)*x) = x + 6x^3/3! + 20x^5/5! + 56x^7/7! +... - Ralf Stephan, Mar 03 2005
From Reinhard Zumkeller, Apr 27 2006: (Start)
A117303(a(n)) = a(n). (End)
Row sums of triangle A132775 - Gary W. Adamson, Aug 29 2007
Row sums of triangle A134233 - Gary W. Adamson, Oct 14 2007
From Johannes W. Meijer, Nov 23 2009: (Start)
a(n) = 3*a(n-1) - 2^(n-1)*(2*n-5) with a(0) = 1.
a(n) = 3*a(n-1) - 2*a(n-2) + 2^n with a(0) = 1 and a(1) = 6.
(End)
G.f.: -G(0) where G(k) = 1 - (2*k+2)/(1 - x/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
E.g.f.: Q(0), where Q(k)= 1 + 4*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013
Comments