cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014480 Expansion of g.f. (1+2*x)/(1-2*x)^2.

Original entry on oeis.org

1, 6, 20, 56, 144, 352, 832, 1920, 4352, 9728, 21504, 47104, 102400, 221184, 475136, 1015808, 2162688, 4587520, 9699328, 20447232, 42991616, 90177536, 188743680, 394264576, 822083584, 1711276032, 3556769792, 7381975040, 15300820992, 31675383808, 65498251264
Offset: 0

Views

Author

Keywords

Comments

Number of binary trees of size n and height n-1, computed from size n=3 onward; i.e. A014480(n) = A073345(n+3,n+2). (For sizes n=0 through 2 there are no such trees.)
Also determinant of the n X n matrix M(i,j)=binomial(2i+2j,i+j). - Benoit Cloitre, Mar 27 2004
Subdiagonal in triangle displayed in A128196. - Peter Luschny, Feb 26 2007
From Jaume Oliver Lafont, Nov 08 2009: (Start)
From two BBP-type formulas by Knuth, (page 6 of the reference)
Sum_{n>=0} 1/a(n) = 2^(1/2)*log(1+2^(1/2))
Sum_{n>=0} (-1)^n/a(n) = 2^(1/2)*atan(1/2^(1/2))
(End)
Create a triangle with first column T(n,1)=1+4*n for n=0 1 2... The remaining terms T(r,c)=T(r,c-1)+T(r-1,c-1). T(n,n+1)=a(n). - J. M. Bergot, Dec 18 2012

Examples

			(1 + 2*x)/(1-2*x)^2 = 1 + 6*x + 20*x^2 + 56*x^3 + 144*x^4 + 352*x^5 + 832*x^6 + ...
		

Crossrefs

Leftmost column of A167580 (shifted).

Programs

  • Haskell
    a014480 n = a014480_list !! n
    a014480_list = 1 : 6 : map (* 4)
       (zipWith (-) (tail a014480_list) a014480_list)
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [2^n*(2*n + 1): n in [0..35]]; // Vincenzo Librandi, Oct 20 2014
  • Maple
    a:=n-> sum(2^n*n^binomial(j,n)/2,j=1..n): seq(a(n),n=1..29); # Zerinvary Lajos, Apr 18 2009
  • Mathematica
    CoefficientList[ Series[(1 + 2*x)/(1 - 2*x)^2, {x, 0, 28}], x]
    LinearRecurrence[{4, -4}, {1, 6}, 29] (* Robert G. Wilson v, Dec 26 2012 *)
    Table[2^n (2*n + 1), {n, 0, 28}] (* Fred Daniel Kline, Oct 20 2014 *)
  • PARI
    Vec((1+2*x)/(1-2*x)^2+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(n) = (2n+1)*2^n = 4a(n-1)-4a(n-2) = 4*A052951(n-1) = a(n-1)+A052951(n) = a(n-1)*(2+4/(2n-1)) = A054582(n, n). - Henry Bottomley, May 16 2001
E.g.f.: x*cosh(sqrt(2)*x) = x + 6x^3/3! + 20x^5/5! + 56x^7/7! +... - Ralf Stephan, Mar 03 2005
From Reinhard Zumkeller, Apr 27 2006: (Start)
a(n) = A118416(n+1,n+1) = A118413(n+1,n+1);
A001511(a(n)) = A003602(a(n));
A117303(a(n)) = a(n). (End)
Row sums of triangle A132775 - Gary W. Adamson, Aug 29 2007
Row sums of triangle A134233 - Gary W. Adamson, Oct 14 2007
From Johannes W. Meijer, Nov 23 2009: (Start)
a(n) = 3*a(n-1) - 2^(n-1)*(2*n-5) with a(0) = 1.
a(n) = 3*a(n-1) - 2*a(n-2) + 2^n with a(0) = 1 and a(1) = 6.
(End)
G.f.: -G(0) where G(k) = 1 - (2*k+2)/(1 - x/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
E.g.f.: Q(0), where Q(k)= 1 + 4*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013