cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014495 Central binomial coefficient - 1.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 19, 34, 69, 125, 251, 461, 923, 1715, 3431, 6434, 12869, 24309, 48619, 92377, 184755, 352715, 705431, 1352077, 2704155, 5200299, 10400599, 20058299, 40116599, 77558759, 155117519, 300540194, 601080389, 1166803109, 2333606219, 4537567649
Offset: 0

Views

Author

N. J. A. Sloane, Denis Pochuev (denis(AT)cdc.Informatik.TH-Darmstadt.de)

Keywords

Comments

For n > 0: sum of positive elements in row (n-1) of triangle A214292. - Reinhard Zumkeller, Jul 12 2012
Number of Young tableaux with n cells and 2 rows. Also number of self-inverse permutations in S_n with longest increasing subsequence of length 2. The a(4) = 5 permutations are 1432, 2143, 3214, 3412, 4231 and the a(5) = 9 permutations are 15432, 21543, 32154, 35142, 42513, 43215, 45312, 52431, 53241. - Alois P. Heinz, Oct 03 2012
Number of nonempty subsets of {1,2,...,n} that contain the same number of even and odd numbers. For example, a(5)=9 and the 9 subsets are {1,2}, {1,4}, {2,3}, {2,5}, {3,4}, {4,5}, {1,2,3,4}, {1,2,4,5}, {2,3,4,5}. - Enrique Navarrete, Feb 10 2018

Crossrefs

Cf. A001405, A037952 (first differences).
a(n) = A094718(n, n) = A094718(n-1, n)+1.
a(n) = A047884(n, 2) for n>=2. - Alois P. Heinz, Oct 03 2012
Cf. A214292.

Programs

  • Magma
    [Binomial(n, Floor(n/2))-1: n in [0..50]]; // Vincenzo Librandi, Feb 11 2018
  • Maple
    a:= n-> binomial(n, iquo(n, 2))-1:
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 03 2012
  • Mathematica
    Table[Binomial[n, Floor[n/2]] - 1, {n, 0, 50}] (* Bruno Berselli, Oct 03 2012 *)
  • Maxima
    A014495(n):=binomial(n,floor(n/2))-1$
    makelist(A014495(n),n,0,30); /* Martin Ettl, Nov 01 2012 */
    

Formula

a(n) = A001405(n)-1.
a(n) = C(n,floor(n/2))-1. - Alois P. Heinz, Oct 03 2012
(n+1)*a(n)-2*a(n-1)-4*(n-1)*a(n-2) = 3*n-3 with n>1, a(0)=a(1)=0. - Bruno Berselli, Oct 03 2012
D-finite with recurrence: -(n+1)*(n-2)*a(n) +(n^2+n-4)*a(n-1) +2*(n-1)*(2*n-5)*a(n-2) -4*(n-1)*(n-2)*a(n-3)=0. - Conjectured by R. J. Mathar, Jan 04 2017, confirmed by Robert Israel, Feb 11 2018
G.f.: (x+1)/(2*x*(x-1)) - sqrt(1-4*x^2)/(2*x*(2*x-1)). - Robert Israel, Feb 11 2018

Extensions

Edited by Andrey Zabolotskiy, Apr 14 2025