A014495 Central binomial coefficient - 1.
0, 0, 1, 2, 5, 9, 19, 34, 69, 125, 251, 461, 923, 1715, 3431, 6434, 12869, 24309, 48619, 92377, 184755, 352715, 705431, 1352077, 2704155, 5200299, 10400599, 20058299, 40116599, 77558759, 155117519, 300540194, 601080389, 1166803109, 2333606219, 4537567649
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
[Binomial(n, Floor(n/2))-1: n in [0..50]]; // Vincenzo Librandi, Feb 11 2018
-
Maple
a:= n-> binomial(n, iquo(n, 2))-1: seq(a(n), n=0..40); # Alois P. Heinz, Oct 03 2012
-
Mathematica
Table[Binomial[n, Floor[n/2]] - 1, {n, 0, 50}] (* Bruno Berselli, Oct 03 2012 *)
-
Maxima
A014495(n):=binomial(n,floor(n/2))-1$ makelist(A014495(n),n,0,30); /* Martin Ettl, Nov 01 2012 */
Formula
a(n) = A001405(n)-1.
a(n) = C(n,floor(n/2))-1. - Alois P. Heinz, Oct 03 2012
(n+1)*a(n)-2*a(n-1)-4*(n-1)*a(n-2) = 3*n-3 with n>1, a(0)=a(1)=0. - Bruno Berselli, Oct 03 2012
D-finite with recurrence: -(n+1)*(n-2)*a(n) +(n^2+n-4)*a(n-1) +2*(n-1)*(2*n-5)*a(n-2) -4*(n-1)*(n-2)*a(n-3)=0. - Conjectured by R. J. Mathar, Jan 04 2017, confirmed by Robert Israel, Feb 11 2018
G.f.: (x+1)/(2*x*(x-1)) - sqrt(1-4*x^2)/(2*x*(2*x-1)). - Robert Israel, Feb 11 2018
Extensions
Edited by Andrey Zabolotskiy, Apr 14 2025
Comments