A014532 Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 3rd column from the center.
1, 4, 15, 50, 161, 504, 1554, 4740, 14355, 43252, 129844, 388752, 1161615, 3465840, 10329336, 30759120, 91538523, 272290140, 809676735, 2407049106, 7154586747, 21263575256, 63191778950, 187790510700, 558069593445, 1658498131836
Offset: 1
Keywords
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 0..200 from T. D. Noe)
- Mark Shattuck, Subword Patterns in Smooth Words, Enum. Comb. Appl. (2024) Vol. 4, No. 4, Art. No. S2R32. See p. 10.
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
Programs
-
Maple
a := n -> simplify(GegenbauerC(n-1, -n-2, -1/2)): seq(a(n), n=1..26); # Peter Luschny, May 09 2016
-
Mathematica
Table[GegenbauerC[n - 1, -n - 2, -1/2], {n,1,50}] (* G. C. Greubel, Feb 28 2017 *)
-
PARI
z='z+O('z^50); Vec(2*z/(1-4*z+z^2+6*z^3+(1-3*z+2*z^3)*sqrt(1-2*z-3*z^2))) \\ G. C. Greubel, Feb 28 2017
Formula
G.f.: 2*z/(1-4*z+z^2+6*z^3+(1-3*z+2*z^3)*sqrt(1-2*z-3*z^2)). - Emeric Deutsch, Dec 05 2003
E.g.f.: exp(x)*BesselI(3, 2x) [0, 0, 0, 1, 4, 15..]. - Paul Barry, Sep 21 2004
a(n-2) = A111808(n,n-3) for n>2. - Reinhard Zumkeller, Aug 17 2005
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n+2,n-1-i) * binomial(n-1-i,i). - Shanzhen Gao, Apr 20 2010
a(n) = -(1/(162*(n+5)*(n+3)))*(9*n+18)*(-1)^n*(-3)^(1/2) * ((n+7)*hypergeom([1/2, n+5],[1],4/3) + hypergeom([1/2, n+4],[1],4/3) * (5*n+19)). - Mark van Hoeij, Oct 30 2011
D-finite with recurrence -(n+5)*(n-1)*a(n) +(n+2)*(2*n+3)*a(n-1) +3*(n+2)*(n+1)*a(n-2)=0. - R. J. Mathar, Dec 02 2012
a(n) ~ 3^(n+5/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 10 2013
G.f.: z*M(z)^3/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths (A001006). - José Luis Ramírez Ramírez, Apr 19 2015
From Peter Luschny, May 09 2016: (Start)
a(n) = C(4+2*n, n-1)*hypergeom([-n+1, -n-5], [-3/2-n], 1/4).
a(n) = GegenbauerC(n-1, -n-2, -1/2). (End)
Extensions
More terms from James Sellers, Feb 05 2000
Comments