cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014633 Even pentagonal numbers.

Original entry on oeis.org

0, 12, 22, 70, 92, 176, 210, 330, 376, 532, 590, 782, 852, 1080, 1162, 1426, 1520, 1820, 1926, 2262, 2380, 2752, 2882, 3290, 3432, 3876, 4030, 4510, 4676, 5192, 5370, 5922, 6112, 6700, 6902, 7526, 7740, 8400, 8626, 9322
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1/8*(1-3*(-1)^(n+1)+12*(n+1))*(1-(-1)^(n+1)+4*(n+1)): n in [0..40]]; // Vincenzo Librandi, Aug 17 2011
    
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{0,12,22,70,92},40] (* Harvey P. Dale, Aug 26 2014 *)
    Select[PolygonalNumber[5,Range[0,100]],EvenQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 15 2017 *)
  • PARI
    lista(nn) = {forstep (n=0, nn, 2, if (ispolygonal(n, 5), print1(n, ", ")););} \\ Michel Marcus, Jun 20 2015

Formula

G.f.: 2*(6+5*x+12*x^2+x^3)/((1+x)^2*(1-x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009, corrected by R. J. Mathar, Sep 16 2009
From Ant King, Aug 16 2011: (Start)
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
a(n) = 48+2*a(n-2)-a(n-4).
a(n) = 1/8*(1-3*(-1)^(n+1)+12*(n+1))*(1-(-1)^(n+1)+4*(n+1)).(End)
Sum_{n>=1} 1/a(n) = 3*log(3)/2 - (1/sqrt(3)+1/4)*Pi - sqrt(3)*log(2-sqrt(3))/2. - Amiram Eldar, Jan 13 2024

Extensions

More terms from Patrick De Geest