A014642 Even octagonal numbers: a(n) = 4*n*(3*n-1).
0, 8, 40, 96, 176, 280, 408, 560, 736, 936, 1160, 1408, 1680, 1976, 2296, 2640, 3008, 3400, 3816, 4256, 4720, 5208, 5720, 6256, 6816, 7400, 8008, 8640, 9296, 9976, 10680, 11408, 12160, 12936, 13736, 14560, 15408, 16280, 17176, 18096, 19040, 20008, 21000, 22016
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- John Elias, Octagonal Nesting Cubes on the Hexagonal Number Spiral Octagonal Nesting Cubes on the Square Number Spiral
- Craig Knecht, Number of positions the remaining tiles can occupy in a 4*n length polyiamond bilayer when one tile is missing.
- Yaohui Zhu, Kaiming Sun, Zhengdong Luo, and Lingfeng Wang, Progressive Self-Learning for Domain Adaptation on Symbolic Regression of Integer Sequences, Proc. 39th AAAI Conf. Artif. Intel. (2025) Vol. 39, No. 1, 1692-1699. See p. 1698.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..50], n-> 8*Binomial(3*n,2)/3); # G. C. Greubel, Oct 09 2019
-
Magma
[8*Binomial(3*n,2)/3: n in [0..50]]; // G. C. Greubel, Oct 09 2019
-
Maple
seq(8*binomial(3*n,2)/3, n=0..50); # G. C. Greubel, Oct 09 2019
-
Mathematica
LinearRecurrence[{3,-3,1},{0,8,40}, 50] (* G. C. Greubel, Jun 07 2017 *) PolygonalNumber[8,Range[0,90,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 19 2020 *)
-
PARI
vector(51, n, 8*binomial(3*(n-1),2)/3 ) \\ G. C. Greubel, Jun 07 2017
-
Sage
[8*binomial(3*n,2)/3 for n in (0..50)] # G. C. Greubel, Oct 09 2019
Formula
a(n) = A000326(n)*8. - Omar E. Pol, Dec 11 2008
a(n) = a(n-1) + 24*n - 16 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
G.f.: x*(8+16*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Jun 07 2017
E.g.f.: 4*x*(2 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Mar 24 2021: (Start)
Sum_{n>=1} 1/a(n) = 3*log(3)/8 - Pi/(8*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 - Pi/(4*sqrt(3)). (End)
Extensions
More terms from Patrick De Geest
Comments