cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014642 Even octagonal numbers: a(n) = 4*n*(3*n-1).

Original entry on oeis.org

0, 8, 40, 96, 176, 280, 408, 560, 736, 936, 1160, 1408, 1680, 1976, 2296, 2640, 3008, 3400, 3816, 4256, 4720, 5208, 5720, 6256, 6816, 7400, 8008, 8640, 9296, 9976, 10680, 11408, 12160, 12936, 13736, 14560, 15408, 16280, 17176, 18096, 19040, 20008, 21000, 22016
Offset: 0

Views

Author

Keywords

Comments

8 times pentagonal numbers. - Omar E. Pol, Dec 11 2008
Sequence found by reading the line from 0, in the direction 0, 8, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012
The sequence forms the even nesting cube-frames (see illustrations in A000567), which separate and appear according to formula along the axes on the zero-centered and one-centered hexagonal number spirals, as well as the axes of the zero-centered and one-centered square number spirals. See illustrations in links. - John Elias, Jul 20 2022

Crossrefs

Programs

  • GAP
    List([0..50], n-> 8*Binomial(3*n,2)/3); # G. C. Greubel, Oct 09 2019
  • Magma
    [8*Binomial(3*n,2)/3: n in [0..50]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    seq(8*binomial(3*n,2)/3, n=0..50); # G. C. Greubel, Oct 09 2019
  • Mathematica
    LinearRecurrence[{3,-3,1},{0,8,40}, 50] (* G. C. Greubel, Jun 07 2017 *)
    PolygonalNumber[8,Range[0,90,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 19 2020 *)
  • PARI
    vector(51, n, 8*binomial(3*(n-1),2)/3 ) \\ G. C. Greubel, Jun 07 2017
    
  • Sage
    [8*binomial(3*n,2)/3 for n in (0..50)] # G. C. Greubel, Oct 09 2019
    

Formula

a(n) = A000326(n)*8. - Omar E. Pol, Dec 11 2008
a(n) = A049450(n)*4 = A033579(n)*2. - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 24*n - 16 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
G.f.: x*(8+16*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Jun 07 2017
E.g.f.: 4*x*(2 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Mar 24 2021: (Start)
Sum_{n>=1} 1/a(n) = 3*log(3)/8 - Pi/(8*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 - Pi/(4*sqrt(3)). (End)

Extensions

More terms from Patrick De Geest