cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000326 Pentagonal numbers: a(n) = n*(3*n-1)/2.

Original entry on oeis.org

0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
Offset: 0

Views

Author

Keywords

Comments

The average of the first n (n > 0) pentagonal numbers is the n-th triangular number. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
a(n) is the sum of n integers starting from n, i.e., 1, 2 + 3, 3 + 4 + 5, 4 + 5 + 6 + 7, etc. - Jon Perry, Jan 15 2004
Partial sums of 1, 4, 7, 10, 13, 16, ... (1 mod 3), a(2k) = k(6k-1), a(2k-1) = (2k-1)(3k-2). - Jon Perry, Sep 10 2004
Starting with offset 1 = binomial transform of [1, 4, 3, 0, 0, 0, ...]. Also, A004736 * [1, 3, 3, 3, ...]. - Gary W. Adamson, Oct 25 2007
If Y is a 3-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Solutions to the duplication formula 2*a(n) = a(k) are given by the index pairs (n, k) = (5,7), (5577, 7887), (6435661, 9101399), etc. The indices are integer solutions to the pair of equations 2(6n-1)^2 = 1 + y^2, k = (1+y)/6, so these n can be generated from the subset of numbers [1+A001653(i)]/6, any i, where these are integers, confined to the cases where the associated k=[1+A002315(i)]/6 are also integers. - R. J. Mathar, Feb 01 2008
a(n) is a binomial coefficient C(n,4) (A000332) if and only if n is a generalized pentagonal number (A001318). Also see A145920. - Matthew Vandermast, Oct 28 2008
Even octagonal numbers divided by 8. - Omar E. Pol, Aug 18 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
The hyper-Wiener index of the star-tree with n edges (see A196060, example). - Emeric Deutsch, Sep 30 2011
More generally the n-th k-gonal number is equal to n + (k-2)*A000217(n-1), n >= 1, k >= 3. In this case k = 5. - Omar E. Pol, Apr 06 2013
Note that both Euler's pentagonal theorem for the partition numbers and Euler's pentagonal theorem for the sum of divisors refer more exactly to the generalized pentagonal numbers, not this sequence. For more information see A001318, A175003, A238442. - Omar E. Pol, Mar 01 2014
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Schuetz and Whieldon link). a(n)= Cat(n,3), so enumerates the number of (n+1)-gon partitions of a (3*(n-1)+2)-gon. Analogous sequences are A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014
Binomial transform of (0, 1, 3, 0, 0, 0, ...) (A169585 with offset 1) and second partial sum of (0, 1, 3, 3, 3, ...). - Gary W. Adamson, Oct 05 2015
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
a(n) is also the number of edges in the Mycielskian of the complete graph K[n]. Indeed, K[n] has n vertices and n(n-1)/2 edges. Then its Mycielskian has n + 3n(n-1)/2 = n(3n-1)/2. See p. 205 of the West reference. - Emeric Deutsch, Nov 04 2016
Sum of the numbers from n to 2n-1. - Wesley Ivan Hurt, Dec 03 2016
Also the number of maximal cliques in the n-Andrásfai graph. - Eric W. Weisstein, Dec 01 2017
Coefficients in the hypergeometric series identity 1 - 5*(x - 1)/(2*x + 1) + 12*(x - 1)*(x - 2)/((2*x + 1)*(2*x + 2)) - 22*(x - 1)*(x - 2)*(x - 3)/((2*x + 1)*(2*x + 2)*(2*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A002412 and A002418. Column 2 of A103450. - Peter Bala, Mar 14 2019
A generalization of the Comment dated Apr 10 2003 follows. (k-3)*A000292(n-2) plus the average of the first n (2k-1)-gonal numbers is the n-th k-gonal number. - Charlie Marion, Nov 01 2020
a(n+1) is the number of Dyck paths of size (3,3n+1); i.e., the number of NE lattice paths from (0,0) to (3,3n+1) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
a(n) is the largest sum of n positive integers x_1, ..., x_n such that x_i | x_(i+1)+1 for each 1 <= i <= n, where x_(n+1) = x_1. - Yifan Xie, Feb 21 2025

Examples

			Illustration of initial terms:
.
.                                       o
.                                     o o
.                          o        o o o
.                        o o      o o o o
.                o     o o o    o o o o o
.              o o   o o o o    o o o o o
.        o   o o o   o o o o    o o o o o
.      o o   o o o   o o o o    o o o o o
.  o   o o   o o o   o o o o    o o o o o
.
.  1    5     12       22           35
- _Philippe Deléham_, Mar 30 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 40.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-130, 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 7-10.
  • André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. A001318 (generalized pentagonal numbers), A049452, A033570, A010815, A034856, A051340, A004736, A033568, A049453, A002411 (partial sums), A033579.
See A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in A022288.
Partial sums of A016777.

Programs

  • GAP
    List([0..50],n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
    
  • Haskell
    a000326 n = n * (3 * n - 1) `div` 2  -- Reinhard Zumkeller, Jul 07 2012
    
  • Magma
    [n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
    
  • Maple
    A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100);
    A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
  • Mathematica
    Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *)
    LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *)
    pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *)
    Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
    PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    a(n)=n*(3*n-1)/2
    
  • PARI
    vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
    
  • PARI
    is_a000326(n) = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5); \\ Hugo Pfoertner, Aug 03 2023
    
  • Python
    # Intended to compute the initial segment of the sequence, not isolated terms.
    def aList():
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 3, y + 3
    A000326 = aList()
    print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019

Formula

Product_{m > 0} (1 - q^m) = Sum_{k} (-1)^k*x^a(k). - Paul Barry, Jul 20 2003
G.f.: x*(1+2*x)/(1-x)^3.
E.g.f.: exp(x)*(x+3*x^2/2).
a(n) = n*(3*n-1)/2.
a(-n) = A005449(n).
a(n) = binomial(3*n, 2)/3. - Paul Barry, Jul 20 2003
a(n) = A000290(n) + A000217(n-1). - Lekraj Beedassy, Jun 07 2004
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - a(n-2) + 3. - Miklos Kristof, Mar 09 2005
a(n) = Sum_{k=1..n} (2*n - k). - Paul Barry, Aug 19 2005
a(n) = 3*A000217(n) - 2*n. - Lekraj Beedassy, Sep 26 2006
a(n) = A126890(n, n-1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = A049452(n) - A022266(n) = A033991(n) - A005476(n). - Zerinvary Lajos, Jun 12 2007
Equals A034856(n) + (n - 1)^2. Also equals A051340 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
a(n) = binomial(n+1, 2) + 2*binomial(n, 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 5. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-2 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 20 2010
a(n) = A000217(n) + 2*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = A014642(n)/8. - Omar E. Pol, Aug 18 2011
a(n) = A142150(n) + A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = (A000290(n) + A000384(n))/2 = (A000217(n) + A000566(n))/2 = A049450(n)/2. - Omar E. Pol, Jan 11 2013
a(n) = n*A000217(n) - (n-1)*A000217(n-1). - Bruno Berselli, Jan 18 2013
a(n) = A005449(n) - n. - Philippe Deléham, Mar 30 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A016777(n),
a(n) = a(n+2) - A016969(n),
a(n) = a(n+3) - A016777(n)*3 = a(n+3) - A017197(n),
a(n) = a(n+4) - A016969(n)*2 = a(n+4) - A017641(n),
a(n) = a(n+5) - A016777(n)*5,
a(n) = a(n+6) - A016969(n)*3,
a(n) = a(n+7) - A016777(n)*7,
a(n) = a(n+8) - A016969(n)*4,
a(n) = a(n+9) - A016777(n)*9. (End)
a(n) = A000217(2n-1) - A000217(n-1), for n > 0. - Ivan N. Ianakiev, Apr 17 2013
a(n) = A002411(n) - A002411(n-1). - J. M. Bergot, Jun 12 2013
Sum_{n>=1} a(n)/n! = 2.5*exp(1). - Richard R. Forberg, Jul 15 2013
a(n) = floor(n/(exp(2/(3*n)) - 1)), for n > 0. - Richard R. Forberg, Jul 27 2013
From Vladimir Shevelev, Jan 24 2014: (Start)
a(3*a(n) + 4*n + 1) = a(3*a(n) + 4*n) + a(3*n+1).
A generalization. Let {G_k(n)}_(n >= 0) be sequence of k-gonal numbers (k >= 3). Then the following identity holds: G_k((k-2)*G_k(n) + c(k-3)*n + 1) = G_k((k-2)*G_k(n) + c(k-3)*n) + G_k((k-2)*n + 1), where c = A000124. (End)
A242357(a(n)) = 1 for n > 0. - Reinhard Zumkeller, May 11 2014
Sum_{n>=1} 1/a(n)= (1/3)*(9*log(3) - sqrt(3)*Pi). - Enrique Pérez Herrero, Dec 02 2014. See the decimal expansion A244641.
a(n) = (A000292(6*n+k-1)-A000292(k))/(6*n-1)-A000217(3*n+k), for any k >= 0. - Manfred Arens, Apr 26 2015 [minor edits from Wolfdieter Lang, May 10 2015]
a(n) = A258708(3*n-1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
a(n) = A007584(n) - A245301(n-1), for n > 0. - Manfred Arens, Jan 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi - 6*log(2))/3 = 0.85501000622865446... - Ilya Gutkovskiy, Jul 28 2016
a(m+n) = a(m) + a(n) + 3*m*n. - Etienne Dupuis, Feb 16 2017
In general, let P(k,n) be the n-th k-gonal number. Then P(k,m+n) = P(k,m) + (k-2)mn + P(k,n). - Charlie Marion, Apr 16 2017
a(n) = A023855(2*n-1) - A023855(2*n-2). - Luc Rousseau, Feb 24 2018
a(n) = binomial(n,2) + n^2. - Pedro Caceres, Jul 28 2019
Product_{n>=2} (1 - 1/a(n)) = 3/5. - Amiram Eldar, Jan 21 2021
(n+1)*(a(n^2) + a(n^2+1) + ... + a(n^2+n)) = n*(a(n^2+n+1) + ... + a(n^2+2n)). - Charlie Marion, Apr 28 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2)*binomial(3*n+k-1, 2*k). - Peter Bala, Nov 04 2024

Extensions

Incorrect example removed by Joerg Arndt, Mar 11 2010

A000567 Octagonal numbers: n*(3*n-2). Also called star numbers.

Original entry on oeis.org

0, 1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, 560, 645, 736, 833, 936, 1045, 1160, 1281, 1408, 1541, 1680, 1825, 1976, 2133, 2296, 2465, 2640, 2821, 3008, 3201, 3400, 3605, 3816, 4033, 4256, 4485, 4720, 4961, 5208, 5461
Offset: 0

Views

Author

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0; then a(n) is the sequence found by reading the line from 0 in the direction 0,1,....
The spiral begins:
.
85--84--83--82--81--80
/ \
86 56--55--54--53--52 79
/ / \ \
87 57 33--32--31--30 51 78
/ / / \ \ \
88 58 34 16--15--14 29 50 77
/ / / / \ \ \ \
89 59 35 17 5---4 13 28 49 76
/ / / / / \ \ \ \ \
90 60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / / /
91 61 37 19 7 1---2 11 26 47 74
\ \ \ \ \ . / / / /
92 62 38 20 8---9--10 25 46 73
\ \ \ \ . / / /
93 63 39 21--22--23--24 45 72
\ \ \ . / /
94 64 40--41--42--43--44 71
\ \ . /
95 65--66--67--68--69--70
\ .
96
.
(End)
From Lekraj Beedassy, Oct 02 2003: (Start)
Also the number of distinct three-cell blocks that may be removed out of A000217(n+1) square cells arranged in a stepping triangular array of side (n+1). A 5-layer triangular array of square cells, for instance, has vertices outlined thus:
x x
x x x
x x x x
x x x x x
x x x x x x
x x x x x x (End)
First derivative at n of A045991. - Ross La Haye, Oct 23 2004
Starting from n=1, the sequence corresponds to the Wiener index of K_{n,n} (the complete bipartite graph wherein each independent set has n vertices). - Kailasam Viswanathan Iyer, Mar 11 2009
Number of divisors of 24^(n-1) for n > 0 (cf A009968). - J. Lowell, Aug 30 2008
a(n) = A001399(6n-5), number of partitions of 6*n - 5 into parts < 4. For example a(2)=8 and partitions of 6*2 - 5 = 7 into parts < 4 are: [1,1,1,1,1,1,1], [1,1,1,1,1,2],[1,1,1,1,3], [1,1,1,2,2], [1,1,2,3], [1,2,2,2], [1,3,3], [2,2,3]. - Adi Dani, Jun 07 2011
Also, sequence found by reading the line from 0 in the direction 0, 8, ..., and the parallel line from 1 in the direction 1, 21, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Sep 10 2011
Partial sums give A002414. - Omar E. Pol, Jan 12 2013
Generate a Pythagorean triple using Euclid's formula with (n, n-1) to give A,B,C. a(n) = B + (A + C)/2. - J. M. Bergot, Jul 13 2013
The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n-4; {1, 2n-2, 3, 2n-2, 1, 18n-8}]. For n=1, this collapses to [5; {5, 10}]. - Magus K. Chu, Oct 10 2022
a(n)*a(n+1) + 1 = (3n^2 + n - 1)^2. In general, a(n)*a(n+k) + k^2 = (3n^2 + (3k-2)n - k)^2. - Charlie Marion, May 23 2023

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 38.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 19-20.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.

Crossrefs

Cf. A014641, A014642, A014793, A014794, A001835, A016777, A045944, A093563 ((6, 1) Pascal, column m=2). A016921 (differences).
Cf. A005408 (the odd numbers).

Programs

  • GAP
    List([0..50], n -> n*(3*n-2)); # G. C. Greubel, Nov 15 2018
    
  • Haskell
    a000567 n = n * (3 * n - 2)  -- Reinhard Zumkeller, Dec 20 2012
    
  • Magma
    [n*(3*n-2) : n in [0..50]]; // Wesley Ivan Hurt, Oct 10 2021
  • Maple
    A000567 := proc(n)
        n*(3*n-2) ;
    end proc:
    seq(A000567(n), n=1..50) ;
  • Mathematica
    Table[n (3 n - 2), {n, 0, 50}] (* Harvey P. Dale, May 06 2012 *)
    Table[PolygonalNumber[RegularPolygon[8], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    PolygonalNumber[8, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 21}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
  • PARI
    a(n)=n*(3*n-2) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    vector(50, n, n--; n*(3*n-2)) \\ G. C. Greubel, Nov 15 2018
    
  • Python
    # Intended to compute the initial segment of the sequence, not isolated terms.
    def aList():
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 6, y + 6
    A000567 = aList()
    print([next(A000567) for i in range(49)]) # Peter Luschny, Aug 04 2019
    
  • Python
    [n*(3*n-2) for n in range(50)] # Gennady Eremin, Mar 10 2022
    
  • Sage
    [n*(3*n-2) for n in range(50)] # G. C. Greubel, Nov 15 2018
    

Formula

a(n) = n*(3*n-2).
a(n) = (3n-2)*(3n-1)*(3n)/((3n-1) + (3n-2) + (3n)), i.e., (the product of three consecutive numbers)/(their sum). a(1) = 1*2*3/(1+2+3), a(2) = 4*5*6/(4+5+6), etc. - Amarnath Murthy, Aug 29 2002
E.g.f.: exp(x)*(x+3*x^2). - Paul Barry, Jul 23 2003
G.f.: x*(1+5*x)/(1-x)^3. Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=1..n} (5*n - 4*k). - Paul Barry, Sep 06 2005
a(n) = n + 6*A000217(n-1). - Floor van Lamoen, Oct 14 2005
a(n) = C(n+1,2) + 5*C(n,2).
Starting (1, 8, 21, 40, 65, ...) = binomial transform of [1, 7, 6, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=8. - Jaume Oliver Lafont, Dec 02 2008
a(n) = A000578(n) - A007531(n). - Reinhard Zumkeller, Sep 18 2009
a(n) = a(n-1) + 6*n - 5 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
a(n) = 2*a(n-1) - a(n-2) + 6. - Ant King, Sep 01 2011
a(n) = A000217(n) + 5*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = (A185212(n) - 1) / 4. - Reinhard Zumkeller, Dec 20 2012
a(n) = A174709(6n). - Philippe Deléham, Mar 26 2013
a(n) = (2*n-1)^2 - (n-1)^2. - Ivan N. Ianakiev, Apr 10 2013
a(6*a(n) + 16*n + 1) = a(6*a(n) + 16*n) + a(6*n + 1). - Vladimir Shevelev, Jan 24 2014
a(0) = 0, a(n) = Sum_{k=0..n-1} A005408(A051162(n-1,k)), n >= 1. - L. Edson Jeffery, Jul 28 2014
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi + 9*log(3))/12 = 1.2774090575596367311949534921... . - Vaclav Kotesovec, Apr 27 2016
From Ilya Gutkovskiy, Jul 29 2016: (Start)
Inverse binomial transform of A084857.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(2*sqrt(3)) = A093766. (End)
a(n) = n * A016777(n-1) = A053755(n) - A000290(n+1). - Bruce J. Nicholson, Aug 10 2017
Product_{n>=2} (1 - 1/a(n)) = 3/4. - Amiram Eldar, Jan 21 2021
P(4k+4,n) = ((k+1)*n - k)^2 - (k*n - k)^2 where P(m,n) is the n-th m-gonal number (a generalization of the Apr 10 2013 formula, a(n) = (2*n-1)^2 - (n-1)^2). - Charlie Marion, Oct 07 2021
From Leo Tavares, Oct 31 2021: (Start)
a(n) = A000290(n) + 4*A000217(n-1). See Square Rays illustration.
a(n) = A000290(n) + A046092(n-1)
a(n) = A000384(n) + 2*A000217(n-1). See Twin Rectangular Rays illustration.
a(n) = A000384(n) + A002378(n-1)
a(n) = A003154(n) - A045944(n-1). See Star Rows illustration. (End)

Extensions

Incorrect example removed by Joerg Arndt, Mar 11 2010

A049450 Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).

Original entry on oeis.org

0, 2, 10, 24, 44, 70, 102, 140, 184, 234, 290, 352, 420, 494, 574, 660, 752, 850, 954, 1064, 1180, 1302, 1430, 1564, 1704, 1850, 2002, 2160, 2324, 2494, 2670, 2852, 3040, 3234, 3434, 3640, 3852, 4070, 4294, 4524, 4760, 5002, 5250, 5504, 5764
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the sequence found by reading the line from 0 in the direction 0,2,.... The spiral begins:
.
56--55--54--53--52
/ \
57 33--32--31--30 51
/ / \ \
58 34 16--15--14 29 50
/ / / \ \ \
59 35 17 5---4 13 28 49
/ / / / \ \ \ \
60 36 18 6 0 3 12 27 48
/ / / / / . / / / /
61 37 19 7 1---2 11 26 47
\ \ \ \ . / / /
62 38 20 8---9--10 25 46
\ \ \ . / /
63 39 21--22--23--24 45
\ \ . /
64 40--41--42--43--44
\ .
65--66--67--68--69--70
(End)
Starting with offset 1 = binomial transform of [2, 8, 6, 0, 0, 0, ...]. - Gary W. Adamson, Jan 09 2009
Number of possible pawn moves on an (n+1) X (n+1) chessboard (n=>3). - Johannes W. Meijer, Feb 04 2010
a(n) = A069905(6n-1): Number of partitions of 6*n-1 into 3 parts. - Adi Dani, Jun 04 2011
Even octagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011
Partial sums give A011379. - Omar E. Pol, Jan 12 2013
First differences are A016933; second differences equal 6. - Bob Selcoe, Apr 02 2015
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n-2; {2, 2n-1, 6, 2n-1, 2, 18n-4}]. - Magus K. Chu, Oct 13 2022

Examples

			On a 4 X 4 chessboard pawns at the second row have (3+4+4+3) moves and pawns at the third row have (2+3+3+2) moves so a(3) = 24. - _Johannes W. Meijer_, Feb 04 2010
From _Adi Dani_, Jun 04 2011: (Start)
a(1)=2: the partitions of 6*1-1=5 into 3 parts are [1,1,3] and[1,2,2].
a(2)=10: the partitions of 6*2-1=11 into 3 parts are [1,1,9], [1,2,8], [1,3,7], [1,4,6], [1,5,5], [2,2,7], [2,3,6], [2,4,5], [3,3,5], and [3,4,4].
(End)
.
.                                                         o
.                                                       o o o
.                                      o              o o o o o
.                                    o o o          o o o o o o o
.                       o          o o o o o      o o o o o o o o o
.                     o o o      o o o o o o o    o o o o o o o o o
.            o      o o o o o    o o o o o o o    o o o o o o o o o
.          o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    o     o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    o     o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    2      10         24             44                 70
- _Philippe Deléham_, Mar 30 2013
		

Crossrefs

Cf. A000567.
Bisection of A001859. Cf. A045944, A000326, A033579, A027599, A049451.
Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A035008 (Knight) and A002492 (Bishop).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. [Bruno Berselli, Jun 10 2013]
Cf. sequences listed in A254963.

Programs

  • GAP
    List([0..50], n-> n*(3*n-1)); # G. C. Greubel, Aug 31 2019
  • Magma
    [n*(3*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2017
    
  • Maple
    seq(n*(3*n-1),n=0..44); # Zerinvary Lajos, Jun 12 2007
  • Mathematica
    Table[n(3n-1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,2,10},50] (* Harvey P. Dale, Jun 21 2014 *)
    2*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2018 *)
  • PARI
    a(n)=n*(3*n-1) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Sage
    [n*(3*n-1) for n in (0..50)] # G. C. Greubel, Aug 31 2019
    

Formula

O.g.f.: A(x) = 2*x*(1+2*x)/(1-x)^3.
a(n) = A049452(n) - A033428(n). - Zerinvary Lajos, Jun 12 2007
a(n) = 2*A000326(n), twice pentagonal numbers. - Omar E. Pol, May 14 2008
a(n) = A022264(n) - A000217(n). - Reinhard Zumkeller, Oct 09 2008
a(n) = a(n-1) + 6*n - 4 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = A014642(n)/4 = A033579(n)/2. - Omar E. Pol, Aug 19 2011
a(n) = A000290(n) + A000384(n) = A000217(n) + A000566(n). - Omar E. Pol, Jan 11 2013
a(n+1) = A014107(n+2) + A000290(n). - Philippe Deléham, Mar 30 2013
E.g.f.: x*(2 + 3*x)*exp(x). - Vincenzo Librandi, Apr 28 2016
a(n) = (2/3)*A000217(3*n-1). - Bruno Berselli, Feb 13 2017
a(n) = A002061(n) + A056220(n). - Bruce J. Nicholson, Sep 21 2017
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*log(3)/2 - Pi/(2*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(3) - 2*log(2). (End)
From Leo Tavares, Feb 23 2022: (Start)
a(n) = A003215(n) - A016813(n).
a(n) = 2*A000290(n) + 2*A000217(n-1). (End)

A033579 Four times pentagonal numbers: a(n) = 2*n*(3*n-1).

Original entry on oeis.org

0, 4, 20, 48, 88, 140, 204, 280, 368, 468, 580, 704, 840, 988, 1148, 1320, 1504, 1700, 1908, 2128, 2360, 2604, 2860, 3128, 3408, 3700, 4004, 4320, 4648, 4988, 5340, 5704, 6080, 6468, 6868, 7280, 7704, 8140, 8588, 9048, 9520, 10004, 10500, 11008, 11528, 12060
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A062717: A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011
Sequence found by reading the line from 0, in the direction 0, 4, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011

Crossrefs

Programs

Formula

a(n) = 4*n*(3*n-1)/2 = 6*n^2 - 2*n = 4*A000326(n). - Omar E. Pol, Dec 11 2008
a(n) = 2*A049450(n). - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 12*n - 8 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = A014642(n)/2. - Omar E. Pol, Aug 19 2011
G.f.: x*(4+8*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
a(n) = A191967(2*n). - Reinhard Zumkeller, Jul 07 2012
a(n) = A181617(n+1) - A181617(n). - J. M. Bergot, Jun 28 2013
a(n) = (A174371(n) - 1)/6. - Miquel Cerda, Jul 28 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
E.g.f.: 2*x*(2 + 3*x)*exp(x).
a(n+1) = Sum_{k=0..n} A017569(k).
Sum_{i>0} 1/a(i) = (9*log(3) - sqrt(3)*Pi)/12 = 0.3705093754425278... (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(2*sqrt(3)) - log(2). - Amiram Eldar, Feb 20 2022

Extensions

More terms from Michel Marcus, Mar 04 2014

A014641 Odd octagonal numbers: (2n+1)*(6n+1).

Original entry on oeis.org

1, 21, 65, 133, 225, 341, 481, 645, 833, 1045, 1281, 1541, 1825, 2133, 2465, 2821, 3201, 3605, 4033, 4485, 4961, 5461, 5985, 6533, 7105, 7701, 8321, 8965, 9633, 10325, 11041, 11781, 12545, 13333, 14145, 14981, 15841, 16725, 17633, 18565, 19521, 20501, 21505
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

Formula

a(n) = a(n-1) + 24*n - 4, with n > 0, a(0)=1. - Vincenzo Librandi, Dec 28 2010
G.f.: (1 + 18*x + 5*x^2)/(1 - 3*x + 3*x^2 - x^3). - Colin Barker, Jan 06 2012
a(n) = A289873(6*n+2). - Hugo Pfoertner, Jul 15 2017
From Peter Bala, Jan 22 2018: (Start)
This is the polynomial Qbar(2,n) in Brent. See A160485 for the triangle of coefficients (with signs) of the Qbar polynomials.
a(n) = (1/4^n) * Sum_{k = 0..n} (2*k + 1)^4*binomial(2*n + 1, n - k).
a(n-1) = (2/4^n) * binomial(2*n,n) * ( 1 + 3^4*(n - 1)/(n + 1) + 5^4*(n - 1)*(n - 2)/((n + 1)*(n + 2)) + 7^4*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)) + ... ). (End)
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi + 3*log(3))/8.
Sum_{n>=0} (-1)^n/a(n) = Pi/8 + sqrt(3)*log(2+sqrt(3))/4. (End)
E.g.f.: exp(x)*(1 + 20*x + 12*x^2). - Stefano Spezia, Apr 16 2022
a(n) = A016754(n) + 4*A014105(n). - Leo Tavares, May 20 2022

Extensions

More terms from Patrick De Geest
Better description from N. J. A. Sloane

A152744 7 times pentagonal numbers: a(n) = 7*n*(3*n-1)/2.

Original entry on oeis.org

0, 7, 35, 84, 154, 245, 357, 490, 644, 819, 1015, 1232, 1470, 1729, 2009, 2310, 2632, 2975, 3339, 3724, 4130, 4557, 5005, 5474, 5964, 6475, 7007, 7560, 8134, 8729, 9345, 9982, 10640, 11319, 12019, 12740, 13482, 14245, 15029, 15834, 16660, 17507, 18375, 19264
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Crossrefs

Similar sequences are listed in A316466.

Programs

  • Magma
    [7*n*(3*n-1)/2: n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    Table[7n (3n-1)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,7,35},50] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(n)=7*n*(3*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = (21*n^2 - 7*n)/2 = A000326(n)*7.
a(n) = a(n-1) + 21*n - 14 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: 7*x*(1+2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, Aug 08 2013
a(n) = Sum_{i = 2..8} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
E.g.f.: 7*x*(2+3*x)/2. - G. C. Greubel, Sep 01 2018
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = (9*log(3) - sqrt(3)*Pi)/21.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(Pi*sqrt(3) - 6*log(2))/21. (End)

A014793 Squares of odd octagonal numbers.

Original entry on oeis.org

1, 441, 4225, 17689, 50625, 116281, 231361, 416025, 693889, 1092025, 1640961, 2374681, 3330625, 4549689, 6076225, 7958041, 10246401, 12996025, 16265089, 20115225, 24611521, 29822521, 35820225, 42680089, 50481025, 59305401
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

G.f.: (-25*x^4 - 964*x^3 - 2030*x^2 - 436*x - 1)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) = ((1 + 2*n)*(1 + 6*n))^2. - Stefano Spezia, Apr 16 2022

Extensions

More terms from Patrick De Geest, Aug 15 2000

A014794 Squares of even octagonal numbers.

Original entry on oeis.org

0, 64, 1600, 9216, 30976, 78400, 166464, 313600, 541696, 876096, 1345600, 1982464, 2822400, 3904576, 5271616, 6969600, 9048064, 11560000, 14561856, 18113536, 22278400, 27123264, 32718400, 39137536, 46457856, 54760000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [16*n^2*(3*n-1)^2: n in [1..50]]; // Vincenzo Librandi, Jan 07 2012
    
  • Mathematica
    Table[16*n^2*(3*n-1)^2,{n,0,30}] (* Vincenzo Librandi, Jan 07 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,64,1600,9216,30976},30] (* Harvey P. Dale, Nov 27 2015 *)
    Select[PolygonalNumber[8,Range[0,50]],EvenQ]^2 (* Harvey P. Dale, Aug 03 2025 *)
  • PARI
    a(n) = 16*n^2*(3*n-1)^2 \\ Vincenzo Librandi, Jan 07 2012

Formula

G.f.: 64*x*(1+20*x+29*x^2+4*x^3)/(1-x)^5. - Colin Barker, Jan 06 2012
a(n) = 16n^2*(3n-1)^2. - Vincenzo Librandi, Jan 07 2012
E.g.f.: 16*exp(x)*x*(4 + 46*x + 48*x^2 + 9*x^3). - Stefano Spezia, Apr 16 2022

Extensions

More terms from Patrick De Geest, Aug 2000
a(8) corrected by Vincenzo Librandi, Jan 07 2012

A211480 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w + 2x + 3y = 1.

Original entry on oeis.org

0, 3, 8, 16, 27, 40, 56, 75, 96, 120, 147, 176, 208, 243, 280, 320, 363, 408, 456, 507, 560, 616, 675, 736, 800, 867, 936, 1008, 1083, 1160, 1240, 1323, 1408, 1496, 1587, 1680, 1776, 1875, 1976, 2080, 2187, 2296, 2408, 2523, 2640, 2760, 2883
Offset: 0

Views

Author

Clark Kimberling, Apr 12 2012

Keywords

Comments

For a guide to related sequences, see A211422.
For n>2, this is the number of 1's in the partitions of 4n-4 into 4 parts. - Wesley Ivan Hurt, Mar 13 2014
List of triples: [4*k*(3*k-1), 4*k*(3*k+1), 3*(2*k+1)^2], respectively A014642, 8*A005449, 3*A016754. - Luce ETIENNE, May 31 2017
Conjecture: Number of partitions of 4n+2 into 3 parts. - George Beck, Mar 23 2023

Crossrefs

Programs

  • Maple
    f:= proc(n) local x,r,ymin,ymax;
      r:= 0:
      for x from -n to n do
        ymin:= max(-n, ceil((-n+1-2*x)/3));
        ymax:= min(n, floor((n+1-2*x)/3));
        if ymin <= ymax then r:= r + ymax-ymin+1 fi
      od;
      r
    end proc:
    map(f, [$0..50]); # Robert Israel, Jun 09 2023
  • Mathematica
    t[n_] := t[n] = Flatten[Table[w + 2 x + 3 y - 1, {w, -n, n}, {x, -n, n}, {y, -n, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 70}] (* A211480 *)
    b[0] := 0; b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2])/(4 n), {i, 0, 2 n}]; Table[b[n - 1] + 2 (n - 1), {n, 50}] (* Wesley Ivan Hurt, Mar 13 2014 *)

Formula

Conjectures from Colin Barker, May 15 2017: (Start)
G.f.: x^2*(3 + 2*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>=5.
(End)
Conjecture: a(n) = (8*floor(n/3)*(2*n-3*floor(n/3)-1)+3*(1-(-1)^(n+2-floor((n+2)/3))))/2 = floor((2*n-1)^2/3). - Luce ETIENNE, May 25 2017

Extensions

Offset corrected by Robert Israel, Jun 09 2023

A028992 Even 9-gonal (or enneagonal) numbers.

Original entry on oeis.org

0, 24, 46, 154, 204, 396, 474, 750, 856, 1216, 1350, 1794, 1956, 2484, 2674, 3286, 3504, 4200, 4446, 5226, 5500, 6364, 6666, 7614, 7944, 8976, 9334, 10450, 10836, 12036, 12450, 13734, 14176, 15544, 16014, 17466, 17964, 19500, 20026, 21646, 22200, 23904
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(1/2)*(28*(n-1)^2 + 60*(n-1) + 33 + (14*(n-1)+15)*(-1)^(n-1)): n in [0..40]]; // Vincenzo Librandi, Aug 19 2011
    
  • PARI
    concat(0, Vec(-2*x*(3*x^3+30*x^2+11*x+12)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, May 30 2015

Formula

a(n) = (1/2)*(28*(n-1)^2 + 60*(n-1) + 33 + (14*(n-1)+15)*(-1)^(n-1)).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4. - Colin Barker, May 30 2015
G.f.: -2*x*(3*x^3+30*x^2+11*x+12) / ((x-1)^3*(x+1)^2). - Colin Barker, May 30 2015

Extensions

0 inserted, offset and formula corrected by Omar E. Pol, Aug 19 2011
Showing 1-10 of 14 results. Next