A014742 Expansion of (1+x^2)/(1 - 2*x - 2*x^2 + x^3).
1, 2, 7, 17, 46, 119, 313, 818, 2143, 5609, 14686, 38447, 100657, 263522, 689911, 1806209, 4728718, 12379943, 32411113, 84853394, 222149071, 581593817, 1522632382, 3986303327, 10436277601, 27322529474, 71531310823, 187271402993, 490282898158, 1283577291479
Offset: 0
Examples
a(2) = F(1)*F(2) + F(3)*F(4) = 1*1 + 2*3 = 7. - _James R. Buddenhagen_, Jan 06 2009
References
- T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of initial terms
- Eric Weisstein's World of Mathematics, Dissection Fallacy
- Wikipedia, Missing square puzzle
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Crossrefs
Cf. A069921. - Kival Ngaokrajang, Jun 27 2014
Cf. similar sequences of the type k*F(n)*F(n+1) + (-1)^n listed in A264080.
Programs
-
Maple
seq(combinat[fibonacci](n-1)*combinat[fibonacci](n)+combinat[fibonacci](n+1)*combinat[fibonacci](n+2), n=0..50); # will give first 50 terms - James R. Buddenhagen, Jan 06 2009
-
Mathematica
CoefficientList[Series[(1 + x^2)/(1 - 2*x - 2*x^2 + x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 27 2014 *) LinearRecurrence[{2, 2, -1},{1, 2, 7},30] (* Ray Chandler, Sep 23 2015 *)
-
PARI
Vec((1+x^2)/(1-2*x-2*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
-
PARI
a(n) = round((2^(-1-n)*((-1)^n*2^(2+n)-3*(3-sqrt(5))^n*(-1+sqrt(5))+3*(1+sqrt(5))*(3+sqrt(5))^n))/5) \\ Colin Barker, Sep 29 2016
Formula
a(n) = F(n-1)*F(n) + F(n+1)*F(n+2), where F = A000045. - James R. Buddenhagen, Jan 06 2009
From Wolfdieter Lang, Jul 15 2014: (Start)
G.f.: (1+x^2)/(1 - 2*x - 2*x^2 + x^3) = (1+x^2)/((1+x)*(1 - 3*x + x^2)) = (2/(1+x) + 3*(1+x)/(1 - 3*x + x^2))/5 (see the name).
a(n) = (2*(-1)^n + 3*(F(2*n) + F(2*(n+1))))/5,
a(n) = (2*(-1)^n + L(2*n-1) + L(2*n+3))/5 with L(n) = A000032(n) and L(-1) = -1. (End)
a(n) = 3*F(n)*F(n+1) + (-1)^n. - Bruno Berselli, Oct 30 2015
a(n) = (2^(-1-n)*((-1)^n*2^(2+n) - 3*(3-sqrt(5))^n*(-1+sqrt(5)) + 3*(1+sqrt(5))*(3+sqrt(5))^n))/5. - Colin Barker, Sep 29 2016
a(n) = Fibonacci(n + 2)^2 - 2*Fibonacci(n)^2. - Detlef Meya, Jun 29 2024
E.g.f.: exp(-x)*(2 + 3*exp(5*x/2)*(cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)))/5. - Stefano Spezia, Jun 30 2024
Extensions
Buddenhagen's Jan 06 2009 entries adjusted for offset 0 by Wolfdieter Lang, Jul 15 2014
Comments