A069921 Define C(n) by the recursion C(0) = 1 + I where I^2 = -1, C(n+1) = 1/(1+C(n)); then a(n) = (-1)^n/Im(C(n)) where Im(z) is the imaginary part of the complex number z.
1, 5, 10, 29, 73, 194, 505, 1325, 3466, 9077, 23761, 62210, 162865, 426389, 1116298, 2922509, 7651225, 20031170, 52442281, 137295677, 359444746, 941038565, 2463670945, 6449974274, 16886251873, 44208781349, 115740092170, 303011495165, 793294393321
Offset: 0
Links
- Kival Ngaokrajang, Illustration of initial terms
- Eric Weisstein's World of Mathematics, Dissection Fallacy
- Wikipedia, Missing square puzzle
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
Magma
[3*Fibonacci(n)*Fibonacci(n+2)+(-1)^n: n in [0..40]]; // Vincenzo Librandi, Sep 24 2015
-
Mathematica
a[n_] := 3Fibonacci[n]Fibonacci[n+2]+(-1)^n (*A000045*) F[n_] := (((1 + Sqrt[5])/2)^n - ((1 - Sqrt[5])/2)^n)/Sqrt[5]; (*A000032*) L[n_] := ((1 + Sqrt[5])/2)^n + ((1 - Sqrt[5])/2)^n; Table[FullSimplify[ExpandAll[(F[n]^2 + L[n]^2)/2]], {n, 0, 50}] (* Roger L. Bagula, Nov 17 2008 *) LinearRecurrence[{2, 2, -1}, {1, 5, 10}, 70] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
-
PARI
a(n)=([0,1,0; 0,0,1; -1,2,2]^n*[1;5;10])[1,1] \\ Charles R Greathouse IV, Sep 23 2015
Formula
a(n) = 3*F(n)*F(n+2) + (-1)^n = 3*A059929(n) +(-1)^n, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = ceiling(3/5*(g/2)^(n+1))-(1+(-1)^n)/2, with g = 3 + sqrt(5).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). - Vladeta Jovovic, May 06 2002
G.f.: (1+3*x-2*x^2)/((1+x)*(1-3*x+x^2)). - Vladeta Jovovic, May 06 2002
a(n) = F(n)^2 + F(n+2)^2. - Ron Knott, Aug 02 2004
a(n) = 2*F(n)*F(n+2) + F(n+1)^2 = F(n+1)*F(n+3) + F(n)^2 +(-1)^(n-1). - J. M. Bergot, Sep 15 2012
Equals the logarithmic derivative of A224415. - Paul D. Hanna, Apr 05 2013
2*a(n) = Fibonacci(n+1)^2 + Lucas(n+1)^2. - Bruno Berselli, Sep 26 2017
Extensions
Edited by Dean Hickerson, May 08 2002
Comments