cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014830 a(1)=1; for n > 1, a(n) = 7*a(n-1) + n.

Original entry on oeis.org

1, 9, 66, 466, 3267, 22875, 160132, 1120932, 7846533, 54925741, 384480198, 2691361398, 18839529799, 131876708607, 923136960264, 6461958721864, 45233711053065, 316635977371473, 2216451841600330, 15515162891202330, 108606140238416331, 760242981668914339, 5321700871682400396
Offset: 1

Views

Author

Keywords

Examples

			For n=5, a(5) = 1*15 + 6*20 + 6^2*15 + 6^3*6 + 6^4*1 = 3267. - _Bruno Berselli_, Nov 13 2015
		

Crossrefs

Row n=7 of A126885.

Programs

  • Maple
    a:=n->sum((7^(n-j)-1)/6,j=0..n): seq(a(n), n=1..19); # Zerinvary Lajos, Jan 15 2007
  • Mathematica
    a[1] = 1; a[n_] := 7*a[n-1]+n; Table[a[n], {n, 10}] (* Zak Seidov, Feb 06 2011 *)
    LinearRecurrence[{9, -15, 7}, {1, 9, 66}, 30] (* Harvey P. Dale, Jul 22 2013 *)
  • PARI
    Vec(x/((1 - x)^2*(1 - 7*x)) + O(x^25)) \\ Colin Barker, Jun 03 2020

Formula

a(n) = (7^(n+1) - 6*n - 7)/36. - Rolf Pleisch, Oct 19 2010
a(1)=1, a(2)=9, a(3)=66; for n > 3, a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3). - Harvey P. Dale, Jul 22 2013
a(n) = Sum_{i=0..n-1} 6^i*binomial(n+1,n-1-i). - Bruno Berselli, Nov 13 2015
G.f.: x/((1 - x)^2*(1 - 7*x)). - Colin Barker, Jun 03 2020
E.g.f.: exp(x)*(7*exp(6*x) - 6*x - 7)/36. - Elmo R. Oliveira, Mar 29 2025