A015402
Gaussian binomial coefficient [ n,10 ] for q=-13.
Original entry on oeis.org
1, 128011456717, 17752510805031727164870, 2446220929187500105890055171302510, 337244135881870906696294510219932684378716373, 46491842741544248966048667175076748587505712393943779761
Offset: 10
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,r] for q=-13:
A015265 (r=2),
A015286 (r=3),
A015303 (r=4),
A015321 (r=5),
A015337 (r=6),
A015355 (r=7),
A015370 (r=8),
A015385 (r=9),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13:
A015386,
A015388,
A015390,
A015391,
A015392,
A015393,
A015394,
A015397,
A015398,
A015399,
A015401. -
Vincenzo Librandi, Nov 05 2012
-
r:=10; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 05 2012
-
Table[QBinomial[n, 10, -13], {n, 10, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
-
A015402(n,r=10,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,10,-13) for n in range(10,15)] # Zerinvary Lajos, May 25 2009
A015388
Gaussian binomial coefficient [ n,10 ] for q=-3.
Original entry on oeis.org
1, 44287, 2941985410, 167517069529030, 10015359787639069513, 588973263031690760850991, 34826053765400471578213696840, 2055503791013087031667210071738520, 121393945396362834176064326157233601646
Offset: 10
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13:
A015386,
A015390,
A015391,
A015392,
A015393,
A015394,
A015397,
A015398,
A015399,
A015401,
A015402.
-
r:=10; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 10, -3], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,10,-3) for n in range(10,18)] # Zerinvary Lajos, May 25 2009
A015390
Gaussian binomial coefficient [ n,10 ] for q=-4.
Original entry on oeis.org
1, 838861, 938250090141, 968690748238618461, 1019729183363623510391901, 1068220365220113899181567068253, 1120383768613759382944995805859747933, 1174735830441360695151745376566623493806173, 1231818594183047090443637654682442929123639613533
Offset: 10
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13:
A015386,
A015388,
A015391,
A015392,
A015393,
A015394,
A015397,
A015398,
A015399,
A015401,
A015402. -
Vincenzo Librandi, Nov 04 2012
-
r:=10; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 10, -4], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,10,-4) for n in range(10,17)] # Zerinvary Lajos, May 25 2009
A015391
Gaussian binomial coefficient [ n,10 ] for q=-5.
Original entry on oeis.org
1, 8138021, 82784230211046, 802023560334345174046, 7844813030956382105126218421, 76584995059524711257676812461230921, 747948211058777330441088769852487456090296, 7304088256300765454892487244083619479306573590296
Offset: 10
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13:
A015386,
A015388,
A015390,
A015392,
A015393,
A015394,
A015397,
A015398,
A015399,
A015401,
A015402.
-
r:=10; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 10, -5], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,10,-5) for n in range(10,17)] # Zerinvary Lajos, May 25 2009
A015386
Gaussian binomial coefficient [ n,10 ] for q=-2.
Original entry on oeis.org
1, 683, 932295, 848699215, 926949282623, 920460637644639, 957498220445101855, 972884994173649887135, 1000137219716325891620511, 1022146087305755916943130783, 1047699739488399814866709052575, 1072321450350081081965428740719775
Offset: 10
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- Vincenzo Librandi, Table of n, a(n) for n = 10..200
- Index entries for linear recurrences with constant coefficients, signature (683,465806,-106203768, -14443712448,903388560384,28908433932288,-473291569496064, -3563607111499776,16004972290244608,24030926136672256,-36028797018963968).
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13:
A015388,
A015390,
A015391,
A015392,
A015393,
A015394,
A015397,
A015398,
A015399,
A015401,
A015402.
-
r:=10; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 10, -2],{n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,10,-2) for n in range(10,21)] # Zerinvary Lajos, May 25 2009
A015392
Gaussian binomial coefficient [ n,10 ] for q=-6.
Original entry on oeis.org
1, 51828151, 3223388672928931, 194007802557550502202331, 11739968552378570066280405695371, 709779726467093092873777345973423761771, 42918585756017923252384776090351752769462732331
Offset: 10
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13:
A015386,
A015388,
A015390,
A015391,
A015393,
A015394,
A015397,
A015398,
A015399,
A015401,
A015402.
-
r:=10; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 10, -6], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,10,-6) for n in range(10,16)] # Zerinvary Lajos, May 25 2009
A015393
Gaussian binomial coefficient [ n,10 ] for q=-7.
Original entry on oeis.org
1, 247165843, 71272779562356450, 20074270583791406305395150, 5672847283550509352791825564114953, 1602343611088456383646516751967506297398179, 452626257785468649545785666454333613632908777305800
Offset: 10
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13:
A015386,
A015388,
A015390,
A015391,
A015392,
A015394,
A015397,
A015398,
A015399,
A015401,
A015402. -
Vincenzo Librandi, Nov 04 2012
-
r:=10; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 10, -7], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,10,-7) for n in range(10,16)] # Zerinvary Lajos, May 25 2009
A015394
Gaussian binomial coefficient [ n,10 ] for q=-8.
Original entry on oeis.org
1, 954437177, 1041086085394771065, 1115678612484825190455949945, 1198243328242032079710778546865654393, 1286564714023293732070008866290952083995937401, 1381443612518576172240265744739493702803061753684478585
Offset: 10
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13:
A015386,
A015388,
A015390,
A015391,
A015392,
A015393,
A015397,
A015398,
A015399,
A015401,
A015402. -
Vincenzo Librandi, Nov 04 2012
-
r:=10; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 10, -8], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,10,-8) for n in range(10,16)] # Zerinvary Lajos, May 25 2009
A015397
Gaussian binomial coefficient [ n,10 ] for q=-9.
Original entry on oeis.org
1, 3138105961, 11078672649879436966, 38576026619154398792076180886, 134526791875519431052113309866825757301, 469057975890128020293538941741406421614821552253, 1635507110993502253670495254060345828123783573932476807608
Offset: 10
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13:
A015386,
A015388,
A015390,
A015391,
A015392,
A015393,
A015394,
A015398,
A015399,
A015401,
A015402. -
Vincenzo Librandi, Nov 04 2012
-
r:=10; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 10, -9], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,10,-9) for n in range(10,16)] # Zerinvary Lajos, May 25 2009
A015398
Gaussian binomial coefficient [ n,10 ] for q=-10.
Original entry on oeis.org
1, 9090909091, 91827364555463728191, 917356289265463645628926537191, 9174480340688613582018540679613398447191, 91743885968026547299515818524084563811678679347191, 917439777120042501293773510987809326410294679682025870347191
Offset: 10
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13:
A015386,
A015388,
A015390,
A015391,
A015392,
A015393,
A015394,
A015397,
A015399,
A015401,
A015402. -
Vincenzo Librandi, Nov 04 2012
-
r:=10; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 10, -10], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,10,-10) for n in range(10,16)] # Zerinvary Lajos, May 25 2009
Showing 1-10 of 11 results.