A015443 Generalized Fibonacci numbers: a(n) = a(n-1) + 8*a(n-2).
1, 1, 9, 17, 89, 225, 937, 2737, 10233, 32129, 113993, 371025, 1282969, 4251169, 14514921, 48524273, 164643641, 552837825, 1869986953, 6292689553, 21252585177, 71594101601, 241614783017, 814367595825, 2747285859961
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Joerg Arndt, Matters Computational (The Fxtbook), p. 318
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Index entries for linear recurrences with constant coefficients, signature (1,8)
Programs
-
Magma
[ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+8*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
-
Mathematica
CoefficientList[Series[1/(1-x-8*x^2), {x,0,50}], x] (* G. C. Greubel, Apr 30 2017 *)
-
PARI
Vec(1/(1-x-8*x^2)+O(x^99)) \\ Charles R Greathouse IV, Feb 03 2014
-
Sage
[lucas_number1(n,1,-8) for n in range(1, 27)] # Zerinvary Lajos, Apr 22 2009
Formula
a(n) = (((1+sqrt(33))/2)^(n+1) - ((1-sqrt(33))/2)^(n+1))/sqrt(33).
a(n) = Sum_{k=0..n} A109466(n,k)*(-8)^(n-k). - Philippe Deléham, Oct 26 2008
G.f.: 1/(1-x-8*x^2). - R. J. Mathar, Apr 07 2011
a(n) = (Sum_{1<=k<=n+1, k odd} C(n+1,k)*33^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014
Comments