A015447 Generalized Fibonacci numbers: a(n) = a(n-1) + 11*a(n-2).
1, 1, 12, 23, 155, 408, 2113, 6601, 29844, 102455, 430739, 1557744, 6295873, 23431057, 92685660, 350427287, 1369969547, 5224669704, 20294334721, 77765701465, 301003383396, 1156426099511, 4467463316867, 17188150411488
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,11).
Programs
-
Magma
[n le 2 select 1 else Self(n-1) + 11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 06 2012
-
Mathematica
Join[{a=1,b=1},Table[c=b+11*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *) LinearRecurrence[{1,11},{1,1},30] (* or *) CoefficientList[Series[ 1/(1-x-11 x^2),{x,0,50}],x] (* Harvey P. Dale, May 08 2011 *)
-
PARI
Vec(1/(1-x-11*x^2)+O(x^99)) \\ Charles R Greathouse IV, Feb 03 2014
-
Sage
[lucas_number1(n,1,-11) for n in range(0, 27)] # Zerinvary Lajos, Apr 22 2009
Formula
a(n) = ( ( (1+3*sqrt(5))/2 )^(n+1) - ( (1-3*sqrt(5))/2 )^(n+1) )/(3*sqrt(5)).
a(n-1) = (1/3)*(-1)^n*Sum_{i=0..n} (-3)^i*Fibonacci(i)*C(n, i). - Benoit Cloitre, Mar 06 2004
a(n) = Sum_{k=0..n} A109466(n,k)*(-11)^(n-k). - Philippe Deléham, Oct 26 2008
G.f.: 1/(1 - x - 11*x^2). - Harvey P. Dale, May 08 2011
a(n) = ( Sum_{1<=k<=n+1, k odd} C(n+1,k)*45^((k-1)/2) )/2^n. - Vladimir Shevelev, Feb 05 2014
Comments