cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015528 a(n) = 3*a(n-1) + 10*a(n-2).

Original entry on oeis.org

0, 1, 3, 19, 87, 451, 2223, 11179, 55767, 279091, 1394943, 6975739, 34876647, 174387331, 871928463, 4359658699, 21798260727, 108991369171, 544956714783, 2724783836059, 13623918656007, 68119594328611, 340597969545903, 1702989851923819, 8514949251230487, 42574746272929651
Offset: 0

Views

Author

Keywords

Comments

The ratio a(n+1)/a(n) converges to 5 as n approaches infinity. - Felix P. Muga II, Mar 10 2014

Programs

  • Magma
    [5^n/7-(-2)^n/7: n in [0..30]]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    Join[{a=0,b=1},Table[c=3*b+10*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    LinearRecurrence[{3,10},{0,1},30] (* or *) CoefficientList[Series[x/(1-x (10x+3)),{x,0,29}],x] (* Harvey P. Dale, Jan 27 2012 *)
  • PARI
    for(n=0,30, print1((5^n - (-2)^n)/7, ", ")) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,3,-10) for n in range(0, 23)]# Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 3*a(n-1) + 10*a(n-2).
a(n) = (5^n - (-2)^n)/7. Binomial transform is A015540. - Paul Barry, Feb 07 2004
G.f.: x/(1 - x*(10*x+3)). - Harvey P. Dale, Jan 27 2012
E.g.f.: exp(-2*x)*(exp(7*x) - 1)/7. - Elmo R. Oliveira, Apr 02 2025