A015584 Expansion of g.f. x/(1 - 9*x - 8*x^2).
0, 1, 9, 89, 873, 8569, 84105, 825497, 8102313, 79524793, 780541641, 7661073113, 75193991145, 738034505209, 7243862476041, 71099038326041, 697842244742697, 6849372509292601, 67227090541574985, 659838794948515673, 6476365878869240937, 63566003269411293817
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,8).
Programs
-
Magma
[n le 2 select n-1 else 9*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2012
-
Mathematica
LinearRecurrence[{9, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 15 2012 *) CoefficientList[Series[x/(1-9x-8x^2),{x,0,30}],x] (* Harvey P. Dale, Sep 06 2022 *)
-
PARI
concat(0, Vec(x / (1-9*x-8*x^2) + O(x^30))) \\ Colin Barker, May 16 2017
-
Sage
[lucas_number1(n,9,-8) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
Formula
a(n) = 9*a(n-1) + 8*a(n-2).
a(n) = (-((9-sqrt(113))/2)^n + ((9+sqrt(113))/2)^n) / sqrt(113). - Colin Barker, May 16 2017
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(113)*x/2)/sqrt(113). - Stefano Spezia, Oct 25 2023
Extensions
Extended by T. D. Noe, May 23 2011
Comments