cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A333429 A(n,k) is the n-th number m that divides k^m + 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 1, 2, 9, 0, 1, 5, 10, 27, 0, 1, 2, 25, 50, 81, 0, 1, 7, 3, 125, 250, 171, 0, 1, 2, 49, 9, 205, 1250, 243, 0, 1, 3, 10, 203, 21, 625, 5050, 513, 0, 1, 2, 9, 50, 343, 26, 1025, 6250, 729, 0, 1, 11, 5, 27, 250, 1379, 27, 2525, 11810, 1539, 0
Offset: 1

Views

Author

Alois P. Heinz, Mar 20 2020

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,     1,    1,   1,    1,     1,   1,    1,     1, ...
  2,    3,     2,    5,   2,    7,     2,   3,    2,    11, ...
  0,    9,    10,   25,   3,   49,    10,   9,    5,   121, ...
  0,   27,    50,  125,   9,  203,    50,  27,   25,   253, ...
  0,   81,   250,  205,  21,  343,   250,  57,   82,  1331, ...
  0,  171,  1250,  625,  26, 1379,  1250,  81,  125,  2783, ...
  0,  243,  5050, 1025,  27, 1421,  2810, 171,  625,  5819, ...
  0,  513,  6250, 2525,  63, 2401,  5050, 243, 2525, 11891, ...
  0,  729, 11810, 3125,  81, 5887,  6250, 513, 3125, 14641, ...
  0, 1539, 25250, 5125, 147, 9653, 14050, 729, 3362, 30613, ...
		

Crossrefs

Rows n=1-2 give: A000012, A092067.
Main diagonal gives A333430.
Cf. A333432.

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=1 then `if`(n<3, n, 0) else
            while nops(p(k)) 0 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    dmax = 12;
    mmax = 2^(dmax+3);
    col[k_] := col[k] = Select[Range[mmax], Divisible[k^#+1, #]&];
    A[n_, k_] := If[n>2 && k==1, 0, col[k][[n]]];
    Table[A[n, d-n+1], {d, 1, dmax}, {n, 1, d}] // Flatten (* Jean-François Alcover, Jan 05 2021 *)

A015954 Numbers k such that k | 7^k + 1.

Original entry on oeis.org

1, 2, 10, 50, 250, 1250, 2810, 5050, 6250, 14050, 25250, 31250, 40210, 70250, 126250, 156250, 201050, 351250, 510050, 631250, 650050, 781250, 789610, 1005250, 1265050, 1419050, 1756250, 2550250, 3156250, 3250250, 3906250, 3948050, 5026250, 6325250, 7095250, 8781250, 9478130
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), this sequence (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=7 of A333429.

A015953 Numbers k such that k | 6^k + 1.

Original entry on oeis.org

1, 7, 49, 203, 343, 1379, 1421, 2401, 5887, 9653, 9947, 11977, 16807, 39991, 41209, 67571, 69629, 83839, 117649, 170723, 271663, 279937, 288463, 347333, 472997, 487403, 586873, 706643, 823543, 1159739, 1195061, 1901641, 1959559, 2019241, 2359469, 2431331
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), this sequence (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=6 of A333429.

Programs

  • Mathematica
    Select[Range[2000000],PowerMod[6,#,#]==#-1&] (* Harvey P. Dale, Aug 28 2012 *)

A015955 Numbers k such that k | 8^k + 1.

Original entry on oeis.org

1, 3, 9, 27, 57, 81, 171, 243, 513, 729, 1083, 1539, 2187, 3249, 4401, 4617, 6561, 9747, 13203, 13851, 19683, 20577, 29241, 32547, 39609, 41553, 59049, 61731, 83619, 87723, 97641, 118179, 118827, 124659, 177147, 185193, 250857, 263169
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), this sequence (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=8 of A333429.

A015957 Numbers k such that k | 9^k + 1.

Original entry on oeis.org

1, 2, 5, 25, 82, 125, 625, 2525, 3125, 3362, 5905, 12625, 15625, 29525, 63125, 78125, 137842, 147625, 188354, 255025, 315625, 375125, 390625, 738125, 1062625, 1275125, 1578125, 1875625, 1953125, 2982025, 3690625, 5313125, 5651522, 6375625, 6973805
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), this sequence (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=9 of A333429.

Programs

  • Mathematica
    Select[Range[7*10^6],PowerMod[9,#,#]==#-1&] (* Harvey P. Dale, Apr 21 2024 *)

Extensions

More terms from David W. Wilson

A015958 Numbers k such that k | 10^k + 1.

Original entry on oeis.org

1, 11, 121, 253, 1331, 2783, 5819, 11891, 14641, 30613, 35167, 45023, 64009, 96569, 130801, 133837, 161051, 273493, 336743, 386837, 495253, 527197, 558877, 640343, 704099, 808841, 1035529, 1062259, 1438811, 1472207, 1652849, 1771561, 2221087, 3008423, 3045449
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), this sequence (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=10 of A333429.

Programs

  • Mathematica
    Select[Range[15*10^5],PowerMod[10,#,#]==#-1&] (* Harvey P. Dale, Oct 01 2017 *)

Extensions

Corrected by T. D. Noe, Oct 31 2006

A015961 Positive integers k such that k | (12^k + 1).

Original entry on oeis.org

1, 13, 169, 1027, 2197, 13351, 28561, 81133, 173563, 371293, 468481, 685633, 1054729, 2256319, 2890927, 4826809, 6090253, 6409507, 8913229, 13711477, 29332147, 37009999, 37582051, 54165007, 62748517, 79173289, 83323591, 115871977, 178249201, 228383233
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), this sequence (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=12 of A333429.

Extensions

More terms from Max Alekseyev, Aug 01 2011
a(30) from Jon E. Schoenfield, Aug 27 2021

A015969 Numbers k that divide 16^k + 1.

Original entry on oeis.org

1, 17, 289, 4913, 83521, 1419857, 6029713, 12027313, 24137569, 85525793, 102505121, 204464321, 410338673, 1453938481, 1742587057, 3475893457, 6975757441, 24716954177, 29623979969, 59090188769, 111612202577, 118587876497, 420188221009, 500540685121, 503607659473
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

More terms from Max Alekseyev, Oct 02 2010
Missing terms a(10), a(14), a(18), and a(23) from Giovanni Resta, Mar 23 2020

A292336 Numbers k such that k^2 divides 11^k + 1.

Original entry on oeis.org

1, 3, 111, 24753, 5293823142513, 8978700270153, 10982563345209, 28230763238181003
Offset: 1

Views

Author

Max Alekseyev, Sep 15 2017

Keywords

Crossrefs

Cf. A034524. Subsequence of A015960.
Cf. A127092 and A128684.

A333134 Positive integers k such that 11^k == 2 (mod k).

Original entry on oeis.org

1, 3, 413, 1329, 6587, 11629, 75761, 925071199, 9031140861789, 114876097917387, 1314252479257933
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2020

Keywords

Comments

No other terms below 10^16. Some larger terms: 1584680529929001639, 15598123298097725094806152851164088027801112472240274433891889912569153113. - Max Alekseyev, Jan 07 2025

Crossrefs

Solutions to b^n == 2 (mod n): A015919 (b=2), A276671 (b=3), A130421 (b=4), A124246 (b=5), A277401 (b=7), this sequence (b=11), A116622 (b=13), A333269 (b=17).
Cf. A015960.

Programs

  • PARI
    for(k=1, 1e6, if(Mod(11, k)^k==2, print1(k", ")))

Extensions

a(9)-a(11) from Max Alekseyev, Jan 07 2025
Showing 1-10 of 10 results.