A016169 a(n) = 7^n - 6^n.
0, 1, 13, 127, 1105, 9031, 70993, 543607, 4085185, 30275911, 222009073, 1614529687, 11664504865, 83828316391, 599858908753, 4277376525367, 30411820662145, 215703854542471, 1526853641242033, 10789535445362647
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- John Elias, Illustration of initial terms: a star number fractal
- Index entries for linear recurrences with constant coefficients, signature (13,-42).
Programs
-
Magma
[n le 2 select n-1 else 13*Self(n-1) -42*Self(n-2): n in [1..31]]; // G. C. Greubel, Nov 10 2024
-
Maple
a:=n->sum(6^(n-j)*binomial(n,j),j=1..n): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 18 2009
-
Mathematica
Table[7^n-6^n,{n,0,30}] (* or *) LinearRecurrence[{13,-42},{0,1},30] (* Harvey P. Dale, Apr 25 2020 *)
-
SageMath
A016169=BinaryRecurrenceSequence(13,-42,0,1) [A016169(n) for n in range(41)] # G. C. Greubel, Nov 10 2024
Formula
G.f.: x/((1-6*x)*(1-7*x)).
E.g.f.: exp(7*x) - exp(6*x). - Mohammad K. Azarian, Jan 14 2009
a(0)=0, a(n) = 7*a(n-1) + 6^(n-1). - Vincenzo Librandi, Feb 09 2011
a(0)=0, a(1)=1, a(n) = 13*a(n-1) - 42*a(n-2). - Vincenzo Librandi, Feb 09 2011
Comments