A016185 a(n) = 9^n - 8^n.
0, 1, 17, 217, 2465, 26281, 269297, 2685817, 26269505, 253202761, 2413042577, 22791125017, 213710059745, 1992110014441, 18478745943857, 170706760005817, 1571545212141185, 14425381885981321, 132080236787517137, 1206736529597136217, 11004743954450081825
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- John Elias, Illustration of initial terms: Sierpinski Carpet
- Wikipedia, Sierpinski carpet
- Index entries for linear recurrences with constant coefficients, signature (17,-72).
Programs
-
Magma
[9^n -8^n: n in [0..40]]; // G. C. Greubel, Nov 29 2024
-
Mathematica
LinearRecurrence[{17,-72}, {0,1}, 31] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
-
Python
def A016185(n): return pow(9,n) - pow(8,n) print([A016185(n) for n in range(41)]) # G. C. Greubel, Nov 29 2024
Formula
G.f.: x/((1-8*x)*(1-9*x)).
E.g.f.: e^(9*x) - e^(8*x). - Mohammad K. Azarian, Jan 14 2009
a(n) = 9*a(n-1) + 8^(n-1), a(0)=0. - Vincenzo Librandi, Feb 09 2011
a(n) = 17*a(n-1) - 72*a(n-2), a(0)=0, a(1)=1. - Vincenzo Librandi, Feb 09 2011
Comments