cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A016630 Decimal expansion of log(7).

Original entry on oeis.org

1, 9, 4, 5, 9, 1, 0, 1, 4, 9, 0, 5, 5, 3, 1, 3, 3, 0, 5, 1, 0, 5, 3, 5, 2, 7, 4, 3, 4, 4, 3, 1, 7, 9, 7, 2, 9, 6, 3, 7, 0, 8, 4, 7, 2, 9, 5, 8, 1, 8, 6, 1, 1, 8, 8, 4, 5, 9, 3, 9, 0, 1, 4, 9, 9, 3, 7, 5, 7, 9, 8, 6, 2, 7, 5, 2, 0, 6, 9, 2, 6, 7, 7, 8, 7, 6, 5, 8, 4, 9, 8, 5, 8, 7, 8, 7, 1, 5, 2
Offset: 1

Views

Author

Keywords

Examples

			1.945910149055313305105352743443179729637084729581861188459390149937579...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
  • Uhler, Horace S.; Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17. Proc. Nat. Acad. Sci. U. S. A. 26, (1940). 205-212.

Crossrefs

Cf. A016735 Continued fraction.

Programs

  • Mathematica
    First[RealDigits[Log[7], 10, 100]] (* Paolo Xausa, Mar 21 2024 *)
  • PARI
    default(realprecision, 20080); x=log(7); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016630.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009

Formula

From Peter Bala, Nov 11 2019: (Start)
log(7) = 2*sqrt(3)*Integral_{t = 0..sqrt(3)/3} (1 - t^4)/(1 + t^6) dt.
log(7) = (8/9)*Sum_{n >= 0} (12*n+11)/((6*n+1)*(6*n+5))*(-1/27)^n.
log(7) = 6*Sum_{n >= 0} ( 243/(12*n+1) - 27/(12*n+5) - 9/(12*n+7) + 1/(12*n+11) )*(1/729)^(n+1), a BPP-type formula. (End)
log(7) = 2*Sum_{n >= 1} 1/(n*P(n, 4/3)*P(n-1, 4/3)), where P(n, x) denotes the n-th Legendre polynomial. The first 20 terms of the series gives the approximation log(7) = 1.945910149055(27...), correct to 12 decimal places. - Peter Bala, Mar 18 2024

A068460 Factorial expansion of log(7) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 0, 3, 0, 8, 8, 2, 11, 1, 5, 11, 1, 7, 1, 11, 16, 12, 12, 13, 5, 4, 26, 19, 12, 20, 0, 18, 14, 22, 6, 29, 0, 27, 16, 23, 23, 23, 34, 27, 4, 27, 18, 0, 10, 27, 42, 24, 9, 16, 6, 52, 2, 38, 44, 30, 51, 61, 7, 19, 0, 45, 18, 51, 43, 54, 7, 15, 69, 44, 51, 9, 74, 5, 69
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			log(7) = 1 + 1/2! + 2/3! + 2/4! + 3/5! + 3/6! + 0/7! + 3/8! + 0/9! + ...
		

Crossrefs

Cf. A016630 (decimal expansion), A016735 (continued fraction).
Cf. A067882 (log(2)), A322334 (log(3)), A322333 (log(5)), A068461 (log(11)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Log(7))] cat [Floor(Factorial(n)*Log(7)) - n*Floor(Factorial((n-1))*Log(7)) : n in [2..80]]; // G. C. Greubel, Dec 05 2018
    
  • Maple
    Digits:=200: a:=n->`if`(n=1,floor(log(7)),floor(factorial(n)*log(7))-n*floor(factorial(n-1)*log(7))); seq[120](a(n),n=1..80); # Muniru A Asiru, Dec 06 2018
  • Mathematica
    With[{b = Log[7]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 05 2018 *)
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=log(7))\1) \\ Increase realprecision (e.g., \p500) to compute more terms. - M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); b = log(7); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Dec 05 2018
    
  • Sage
    def a(n):
        if (n==1): return floor(log(7))
        else: return expand(floor(factorial(n)*log(7)) - n*floor(factorial(n-1)*log(7)))
    [a(n) for n in (1..80)] # G. C. Greubel, Dec 05 2018

Extensions

Name edited and keywords cons,easy removed by M. F. Hasler, Nov 25 2018
Showing 1-2 of 2 results.