cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A154158 Decimal expansion of log_7(10).

Original entry on oeis.org

1, 1, 8, 3, 2, 9, 4, 6, 6, 2, 4, 5, 4, 9, 3, 8, 3, 2, 6, 8, 1, 7, 9, 2, 8, 5, 6, 1, 6, 4, 6, 8, 5, 9, 1, 4, 8, 1, 6, 5, 4, 4, 4, 5, 2, 2, 9, 4, 2, 3, 9, 4, 7, 2, 3, 3, 5, 6, 3, 4, 0, 9, 1, 0, 4, 5, 5, 9, 1, 1, 8, 7, 6, 5, 4, 8, 4, 6, 0, 1, 0, 1, 9, 7, 3, 4, 9, 8, 1, 6, 1, 8, 0, 2, 2, 8, 1, 3, 5
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.1832946624549383268179285616468591481654445229423947233563...
		

Crossrefs

Cf. decimal expansion of log_7(m): A152713 (m=2), A152945 (m=3), A153103 (m=4), A153203 (m=5), A153463 (m=6), A153755 (m=8), A113211 (m=9), this sequence, A154179 (m=11), A154200 (m=12), A154294 (m=13), A154467 (m=14), A154572 (m=15), A154793 (m=16), A154857 (m=17), A154912 (m=18), A155059 (m=19), A155496 (m=20), A155591 (m=21), A155735 (m=22), A155824 (m=23), A155964 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(10)/Log(7); // G. C. Greubel, Sep 02 2018
  • Mathematica
    RealDigits[Log[7, 10], 10,100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(10)/log(7) \\ G. C. Greubel, Sep 02 2018
    

Formula

Equals A002392 / A016630 = 1/A153620. - R. J. Mathar, Jul 31 2025

A020860 Decimal expansion of log(7)/log(2).

Original entry on oeis.org

2, 8, 0, 7, 3, 5, 4, 9, 2, 2, 0, 5, 7, 6, 0, 4, 1, 0, 7, 4, 4, 1, 9, 6, 9, 3, 1, 7, 2, 3, 1, 8, 3, 0, 8, 0, 8, 6, 4, 1, 0, 2, 6, 6, 2, 5, 9, 6, 6, 1, 4, 0, 7, 8, 3, 6, 7, 7, 2, 9, 1, 7, 2, 4, 0, 7, 0, 3, 2, 0, 8, 4, 8, 8, 6, 2, 1, 9, 2, 9, 8, 6, 4, 9, 7, 8, 6, 0, 9, 9, 9, 1, 7, 0, 2, 1, 0, 7, 8
Offset: 1

Views

Author

Keywords

Examples

			2.807354922...
		

Crossrefs

Programs

A279061 Number of divisors of n of the form 7*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2016

Keywords

Comments

Möebius transform is a period-7 sequence {1, 0, 0, 0, 0, 0, 0, ...}.

Examples

			a(8) = 2 because 8 has 4 divisors {1,2,4,8} among which 2 divisors {1,8} are of the form 7*k + 1.
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(0)..a(N)
    V:= Vector(N):
    for k from 1 to N do
      R:= [seq(i,i=k..N,7*k)];
      V[R]:= map(`+`,V[R],1);
    od:
    0,seq(V[i],i=1..N); # Robert Israel, Dec 05 2016
  • Mathematica
    nmax = 120; CoefficientList[Series[Sum[x^k/(1 - x^(7 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 120; CoefficientList[Series[Sum[x^(7 k + 1)/(1 - x^(7 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[Count[Divisors[n],?(IntegerQ[(#-1)/7]&)],{n,0,100}] (* _Harvey P. Dale, Nov 08 2022 *)
  • PARI
    concat([0], Vec(sum(k=1, 100, x^k / (1 - x^(7*k))) + O(x^101))) \\ Indranil Ghosh, Mar 29 2017

Formula

G.f.: Sum_{k>=1} x^k/(1 - x^(7*k)).
G.f.: Sum_{k>=0} x^(7*k+1)/(1 - x^(7*k+1)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,7) - (1 - gamma)/7 = 0.713612..., gamma(1,7) = -(psi(1/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363795 Number of divisors of n of the form 7*k + 2.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 3, 0, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 2, 1, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 2 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==2);

Formula

G.f.: Sum_{k>0} x^(2*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-5)/(1 - x^(7*k-5)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,7) - (1 - gamma)/7 = 0.188117..., gamma(2,7) = -(psi(2/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363805 Number of divisors of n of the form 7*k + 3.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 2, 0, 1, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 0, 0, 3, 0, 0, 2, 1, 0, 2, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 3 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==3);

Formula

G.f.: Sum_{k>0} x^(3*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-4)/(1 - x^(7*k-4)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,7) - (1 - gamma)/7 = -0.0004108181..., gamma(3,7) = -(psi(3/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363806 Number of divisors of n of the form 7*k + 4.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 4 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==4);

Formula

G.f.: Sum_{k>0} x^(4*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-3)/(1 - x^(7*k-3)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,7) - (1 - gamma)/7 = -0.102846..., gamma(4,7) = -(psi(4/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363807 Number of divisors of n of the form 7*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 2, 0, 0, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 5 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==5);

Formula

G.f.: Sum_{k>0} x^(5*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-2)/(1 - x^(7*k-2)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,7) - (1 - gamma)/7 = -0.169787..., gamma(5,7) = -(psi(5/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363808 Number of divisors of n of the form 7*k + 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 6 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==6);

Formula

G.f.: Sum_{k>0} x^(6*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-1)/(1 - x^(7*k-1)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(6,7) - (1 - gamma)/7 = -0.218328..., gamma(6,7) = -(psi(6/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A016644 Decimal expansion of log(21).

Original entry on oeis.org

3, 0, 4, 4, 5, 2, 2, 4, 3, 7, 7, 2, 3, 4, 2, 2, 9, 9, 6, 5, 0, 0, 5, 9, 7, 9, 8, 0, 3, 6, 5, 7, 0, 5, 4, 3, 4, 2, 8, 4, 5, 7, 5, 2, 8, 7, 4, 0, 4, 6, 1, 0, 6, 4, 0, 1, 9, 4, 0, 8, 4, 4, 8, 3, 5, 7, 5, 0, 7, 4, 1, 5, 5, 9, 7, 0, 6, 7, 8, 2, 3, 4, 6, 6, 1, 2, 7, 4, 2, 5, 3, 4, 0, 1, 6, 0, 3, 6, 1
Offset: 1

Views

Author

Keywords

Examples

			3.044522437723422996500597980365705434284575287404610640194084483575074....
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016449 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[21], 10, 120][[1]] (* Harvey P. Dale, Sep 04 2012 *)
  • PARI
    default(realprecision, 20080); x=log(21); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016644.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009, corrected May 20 2009

Formula

Eqals A016630 + A002391. - R. J. Mathar, Jul 22 2025

A068460 Factorial expansion of log(7) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 0, 3, 0, 8, 8, 2, 11, 1, 5, 11, 1, 7, 1, 11, 16, 12, 12, 13, 5, 4, 26, 19, 12, 20, 0, 18, 14, 22, 6, 29, 0, 27, 16, 23, 23, 23, 34, 27, 4, 27, 18, 0, 10, 27, 42, 24, 9, 16, 6, 52, 2, 38, 44, 30, 51, 61, 7, 19, 0, 45, 18, 51, 43, 54, 7, 15, 69, 44, 51, 9, 74, 5, 69
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			log(7) = 1 + 1/2! + 2/3! + 2/4! + 3/5! + 3/6! + 0/7! + 3/8! + 0/9! + ...
		

Crossrefs

Cf. A016630 (decimal expansion), A016735 (continued fraction).
Cf. A067882 (log(2)), A322334 (log(3)), A322333 (log(5)), A068461 (log(11)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Log(7))] cat [Floor(Factorial(n)*Log(7)) - n*Floor(Factorial((n-1))*Log(7)) : n in [2..80]]; // G. C. Greubel, Dec 05 2018
    
  • Maple
    Digits:=200: a:=n->`if`(n=1,floor(log(7)),floor(factorial(n)*log(7))-n*floor(factorial(n-1)*log(7))); seq[120](a(n),n=1..80); # Muniru A Asiru, Dec 06 2018
  • Mathematica
    With[{b = Log[7]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 05 2018 *)
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=log(7))\1) \\ Increase realprecision (e.g., \p500) to compute more terms. - M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); b = log(7); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Dec 05 2018
    
  • Sage
    def a(n):
        if (n==1): return floor(log(7))
        else: return expand(floor(factorial(n)*log(7)) - n*floor(factorial(n-1)*log(7)))
    [a(n) for n in (1..80)] # G. C. Greubel, Dec 05 2018

Extensions

Name edited and keywords cons,easy removed by M. F. Hasler, Nov 25 2018
Showing 1-10 of 14 results. Next