cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A215960 First differences of A016759.

Original entry on oeis.org

2186, 75938, 745418, 3959426, 14704202, 43261346, 108110858, 239479298, 483533066, 907216802, 1603736906, 2698690178, 4356837578, 6789523106, 10262737802, 15105828866, 21720853898, 30592580258, 42299129546, 57523267202, 77064337226, 101850842018
Offset: 0

Views

Author

N. J. A. Sloane, Aug 28 2012

Keywords

Crossrefs

Cf. A016759.

Programs

  • Magma
    [2*(7*t*(t*(t+17)+91)+1093) where t is 4*n*(n+2): n in [0..21]]; // Bruno Berselli, Aug 29 2012
  • Mathematica
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {2186, 75938, 745418, 3959426, 14704202, 43261346, 108110858}, 22] (* Bruno Berselli, Aug 29 2012 *)

Formula

G.f.: 2*(1093+30318*x+129879*x^2+129844*x^3+30339*x^4+1086*x^5+x^6)/(1-x)^7. [Bruno Berselli, Aug 29 2012]
a(n) = 2*(7*t*(t*(t+17)+91)+1093), where t=4*n*(n+2). [Bruno Berselli, Aug 29 2012]

A016951 a(n) = (6*n + 3)^7.

Original entry on oeis.org

2187, 4782969, 170859375, 1801088541, 10460353203, 42618442977, 137231006679, 373669453125, 897410677851, 1954897493193, 3938980639167, 7446353252589, 13348388671875, 22876792454961, 37725479487783, 60170087060757, 93206534790699, 140710042265625, 207616015289871
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+3)^7: n in [0..40]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    a[n_] := (6*n + 3)^7; Array[a, 50, 0] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^7.
a(n) = 3^7*A016759(n).
Sum_{n>=0} 1/a(n) = 127*zeta(7)/279936.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/403107840. (End)

A016747 a(n) = (2*n)^7.

Original entry on oeis.org

0, 128, 16384, 279936, 2097152, 10000000, 35831808, 105413504, 268435456, 612220032, 1280000000, 2494357888, 4586471424, 8031810176, 13492928512, 21870000000, 34359738368, 52523350144, 78364164096, 114415582592, 163840000000, 230539333248, 319277809664, 435817657216
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A016759.

Programs

Formula

O.g.f.: 128*x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6)/(1-x)^8. - R. J. Mathar, May 07 2008
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(7)/128.
Sum_{n>=1} (-1)^(n+1)/a(n) = 63*zeta(7)/8192. (End)

A016831 a(n) = (4n+2)^7.

Original entry on oeis.org

128, 279936, 10000000, 105413504, 612220032, 2494357888, 8031810176, 21870000000, 52523350144, 114415582592, 230539333248, 435817657216, 781250000000, 1338925209984, 2207984167552, 3521614606208, 5455160701056, 8235430000000, 12151280273024, 17565568854912, 24928547056768
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4*n + 2)^7, {n, 0, 20}] (* Amiram Eldar, Apr 21 2023 *)

Formula

From Amiram Eldar, Apr 21 2023: (Start)
a(n) = A016825(n)^7.
a(n) = 2^7*A016759(n).
Sum_{n>=0} 1/a(n) = 127*zeta(7)/16384.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/23592960. (End)

A017119 a(n) = (8*n + 4)^7 = 4^7*(2*n + 1)^7.

Original entry on oeis.org

16384, 35831808, 1280000000, 13492928512, 78364164096, 319277809664, 1028071702528, 2799360000000, 6722988818432, 14645194571776, 29509034655744, 55784660123648, 100000000000000, 171382426877952, 282621973446656, 450766669594624, 698260569735168, 1054135040000000, 1555363874947072, 2248392813428736
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A001015(A017113(n)). - Wesley Ivan Hurt, Mar 10 2014
a(n) = 16384*A016759(n). - Michel Marcus, Mar 11 2014
G.f.: 16384*(x+1)*(x^6 + 2178*x^5 + 58479*x^4 + 201244*x^3 + 58479*x^2 + 2178*x + 1) / (x-1)^8. - Colin Barker, Mar 11 2014
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = 2^7*A016831(n).
Sum_{n>=0} 1/a(n) = 127*zeta(7)/2097152.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/3019898880. (End)

Extensions

More terms from Michel Marcus, Mar 11 2014

A017335 a(n) = (10*n + 5)^7.

Original entry on oeis.org

78125, 170859375, 6103515625, 64339296875, 373669453125, 1522435234375, 4902227890625, 13348388671875, 32057708828125, 69833729609375, 140710042265625, 266001988046875, 476837158203125, 817215093984375, 1347646586640625, 2149422977421875, 3329565857578125
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(10*n+5)^7: n in [0..25]]; // Vincenzo Librandi, Aug 02 2011
  • Mathematica
    Table[(10*n + 5)^7, {n, 0, 20}] (* Amiram Eldar, Apr 18 2023 *)

Formula

G.f.: 78125*(x+1)*(x^6 + 2178*x^5 + 58479*x^4 + 201244*x^3 + 58479*x^2 + 2178*x + 1)/(x-1)^8. - Colin Barker, Nov 13 2012
From Amiram Eldar, Apr 18 2023: (Start)
a(n) = A017329(n)^7.
a(n) = 5^7 * A016759(n).
Sum_{n>=0} 1/a(n) = 127*zeta(7)/10000000.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/14400000000. (End)
Showing 1-6 of 6 results.