A016970 a(n) = (6*n + 5)^2.
25, 121, 289, 529, 841, 1225, 1681, 2209, 2809, 3481, 4225, 5041, 5929, 6889, 7921, 9025, 10201, 11449, 12769, 14161, 15625, 17161, 18769, 20449, 22201, 24025, 25921, 27889, 29929, 32041, 34225, 36481, 38809, 41209, 43681, 46225, 48841, 51529
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Milan Janjic, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..40],n->(6*n+5)^2); # Muniru A Asiru, Dec 06 2018
-
Magma
[(6*n+5)^2: n in [0..50]]; // Vincenzo Librandi, May 07 2011
-
Maple
[(6*n+5)^2$n=0..40]; # Muniru A Asiru, Dec 06 2018
-
Mathematica
Array[(6 # + 5)^2 &, 38, 0] (* or *) CoefficientList[Series[(-25 - 46 x - x^2)/(x - 1)^3, {x, 0, 37}], x] (* Michael De Vlieger, Dec 06 2018 *) CoefficientList[Series[E^x (25 + 96 x + 36 x^2), {x, 0, 50}], x]*Table[n!, {n, 0, 50}] (* Stefano Spezia, Dec 07 2018 *)
-
PARI
a(n)=(6*n+5)^2 \\ Charles R Greathouse IV, Jul 28 2016
-
Sage
s=((25+46*x+x^2)/(1-x)^3).series(x, 20); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 07 2018
Formula
G.f.: (25 + 46*x + x^2) / (1-x)^3. - R. J. Mathar, Mar 10 2011
a(n) = 24 * A000326(n+1) + 1. - Jean-Bernard François, Oct 12 2014
a(n) = 6*A033579(n+1) + 1. - Miquel Cerda, Jul 28 2016
E.g.f.: exp(x)*(25 + 96*x + 36*x^2). - Stefano Spezia, Dec 07 2018
Sum_{n>=0} 1/a(n) = A086731. - Amiram Eldar, Nov 17 2020
Comments