cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A016972 a(n) = (6*n + 5)^4.

Original entry on oeis.org

625, 14641, 83521, 279841, 707281, 1500625, 2825761, 4879681, 7890481, 12117361, 17850625, 25411681, 35153041, 47458321, 62742241, 81450625, 104060401, 131079601, 163047361, 200533921, 244140625, 294499921, 352275361, 418161601, 492884401, 577200625, 671898241
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A000583.

Programs

Formula

From Chai Wah Wu, Mar 20 2017: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: (-x^4 - 2396*x^3 - 16566*x^2 - 11516*x - 625)/(x - 1)^5. (End)
From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^4 = A016970(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(3, 5/6)/7776. (End)

A016973 a(n) = (6*n + 5)^5.

Original entry on oeis.org

3125, 161051, 1419857, 6436343, 20511149, 52521875, 115856201, 229345007, 418195493, 714924299, 1160290625, 1804229351, 2706784157, 3939040643, 5584059449, 7737809375, 10510100501, 14025517307, 18424351793, 23863536599, 30517578125, 38579489651, 48261724457
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A000584.

Programs

  • Magma
    [(6*n+5)^5: n in [0..30]]; // Vincenzo Librandi, May 07 2011
  • Mathematica
    (6*Range[0,20]+5)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{3125,161051,1419857,6436343,20511149,52521875},20] (* Harvey P. Dale, Sep 24 2014 *)

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Sep 24 2014
G.f.: (3125 + 142301*x + 500426*x^2 + 270466*x^3 + 16801*x^4 + x^5)/(-1+x)^6. - Harvey P. Dale, Aug 13 2021
From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^5.
Sum_{n>=0} 1/a(n) = 3751*zeta(5)/7776 - 11*Pi^5/(3888*sqrt(3)). (End)

A016974 a(n) = (6*n + 5)^6.

Original entry on oeis.org

15625, 1771561, 24137569, 148035889, 594823321, 1838265625, 4750104241, 10779215329, 22164361129, 42180533641, 75418890625, 128100283921, 208422380089, 326940373369, 496981290961, 735091890625, 1061520150601, 1500730351849, 2081951752609, 2839760855281, 3814697265625
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001014 (n^6).

Programs

  • Magma
    [(6*n+5)^6: n in [0..25]]; // Vincenzo Librandi, May 10 2011
  • Mathematica
    (6Range[0,20]+5)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{15625,1771561,24137569,148035889,594823321,1838265625,4750104241},30] (* Harvey P. Dale, Apr 24 2025 *)

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^6 = A016970(n)^3 = A016971(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(5, 5/6)/5598720. (End)

A016975 a(n) = (6*n + 5)^7.

Original entry on oeis.org

78125, 19487171, 410338673, 3404825447, 17249876309, 64339296875, 194754273881, 506623120463, 1174711139837, 2488651484819, 4902227890625, 9095120158391, 16048523266853, 27136050989627, 44231334895529, 69833729609375, 107213535210701, 160578147647843, 235260548044817
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001015 (n^7).

Programs

  • Magma
    [(6*n+5)^7: n in [0..25]]; // Vincenzo Librandi, May 11 2011
  • Mathematica
    (6Range[0,20]+5)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{78125,19487171,410338673,3404825447,17249876309,64339296875,194754273881,506623120463},20] (* Harvey P. Dale, Jan 30 2013 *)

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Harvey P. Dale, Jan 30 2013
From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^7.
Sum_{n>=0} 1/a(n) = 138811*zeta(7)/279936 - 301*Pi^7/(1049760*sqrt(3)). (End)

A104777 Integer squares congruent to 1 mod 6.

Original entry on oeis.org

1, 25, 49, 121, 169, 289, 361, 529, 625, 841, 961, 1225, 1369, 1681, 1849, 2209, 2401, 2809, 3025, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6889, 7225, 7921, 8281, 9025, 9409, 10201, 10609, 11449, 11881, 12769, 13225, 14161, 14641, 15625, 16129
Offset: 1

Views

Author

Michael Somos, Mar 24 2005

Keywords

Comments

Exponents of powers of q in expansion of eta(q^24).
Odd squares not divisible by 3. - Reinhard Zumkeller, Nov 14 2015
From Peter Bala, Jan 03 2025: (Start)
Exponents of q in the expansion of q*Product_{n >= 1} (1 - q^(24*n))^5/(1 - q^(48*n))^2 = q - 5*q^(5^2) + 7*q^(7^2) - 11*q^(11^2) + 13*q^(13^2) - 17*q^(17^2) + 19*q^(19)^2 - + ... (a consequence of the quintuple product identity).
Also, exponents in the expansion of q*Product_{n >= 1} (1 - q^(48*n))^13 / ( (1 - q^(24*n))*(1 - q^(96*n)) )^5 = q + 5*q^(5^2) + 7*q^(7^2) + 11*q^(11^2) - 13*q^(13^2) - 17*q^(17^2) - 19*q^(19^2) - 23*q^(23^2) + + + + - - - - ... (see Oliver, Theorem 1.1). (End)

Examples

			eta(q^24) = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + ...
		

Crossrefs

Disjoint union of A016922 and A016970.

Programs

  • Haskell
    a104777 = (^ 2) . a007310  -- Reinhard Zumkeller, Nov 14 2015
  • Maple
    seq(9*(n-1/2)^2 + 1/4 + (-1)^n * (3*n - 3/2), n = 1 .. 100); # Robert Israel, Dec 12 2014
  • Mathematica
    Select[Range[130]^2,Mod[#,6]==1&] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,25,49,121,169},50] (* Harvey P. Dale, Mar 09 2017 *)
  • PARI
    {a(n) = (3*n - 1 - n%2)^2};
    

Formula

A033683(a(n)) = 1.
G.f.: ( -1-24*x-22*x^2-24*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Feb 20 2011
a(n) = A007310(n)^2 = 1 + 24*A001318(n-1).
a(n) = 9*n^2 - 9*n + 5/2 + (-1)^n * (3*n - 3/2). a(n+4) = 2*a(n+2) - a(n) + 72. - Robert Israel, Dec 12 2014
a(n) == 1 (mod 24). - Joerg Arndt, Jan 03 2017
Sum_{n>=1} 1/a(n) = Pi^2/9 (A100044). - Amiram Eldar, Dec 19 2020

A016976 a(n) = (6*n + 5)^8.

Original entry on oeis.org

390625, 214358881, 6975757441, 78310985281, 500246412961, 2251875390625, 7984925229121, 23811286661761, 62259690411361, 146830437604321, 318644812890625, 645753531245761, 1235736291547681, 2252292232139041, 3936588805702081, 6634204312890625, 10828567056280801
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001016 (n^8).

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^8 = A016970(n)^4 = A016972(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(7, 5/6)/8465264640. (End)

A017222 a(n) = (9*n + 5)^2.

Original entry on oeis.org

25, 196, 529, 1024, 1681, 2500, 3481, 4624, 5929, 7396, 9025, 10816, 12769, 14884, 17161, 19600, 22201, 24964, 27889, 30976, 34225, 37636, 41209, 44944, 48841, 52900, 57121, 61504, 66049, 70756
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form (m*n+5)^2: A010864 (m=0), A000290 (m=1), A016754 (m=2), A016790 (m=3), A016814 (m=4), A016850 (m=5), A016970 (m=6), A017042 (m=7), A017126 (m=8), this sequence (m=9), A017330 (m=10), A017450 (m=11), A017582 (m=12).

Programs

Formula

a(n) = A017221(n)^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 22 2012
G.f.: (25 + 121*x + 16*x^2)/(1-x)^3. - R. J. Mathar, Mar 20 2018
From G. C. Greubel, Dec 29 2022: (Start)
a(2*n+1) = 4*A017246(n).
a(n) = a(n-1) + 9*(18*n + 1).
E.g.f.: (25 + 171*x + 81*x^2)*exp(x). (End)

A016977 a(n) = (6*n + 5)^9.

Original entry on oeis.org

1953125, 2357947691, 118587876497, 1801152661463, 14507145975869, 78815638671875, 327381934393961, 1119130473102767, 3299763591802133, 8662995818654939, 20711912837890625, 45848500718449031, 95151694449171437, 186940255267540403, 350356403707485209, 630249409724609375
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^9 = A016971(n)^3.
Sum_{n>=0} 1/a(n) = 5028751*zeta(9)/10077696 - 15371*Pi^9/(529079040*sqrt(3)). (End)

A291582 Maximum number of 6 sphinx tile shapes in a sphinx tiled hexagon of order n.

Original entry on oeis.org

30, 132, 306, 552, 870, 1260, 1722, 2256, 2862, 3540, 4290, 5112, 6006, 6972, 8010, 9120, 10302, 11556, 12882, 14280, 15750, 17292, 18906, 20592, 22350, 24180, 26082, 28056, 30102, 32220, 34410, 36672, 39006, 41412, 43890, 46440, 49062, 51756, 54522, 57360, 60270, 63252
Offset: 1

Views

Author

Craig Knecht, Aug 30 2017

Keywords

Comments

The equilateral triangle composed of 144 smaller equilateral triangles is the smallest triangle that can be tiled with the sphinx. This triangle is used to form all orders of the hexagon.
Walter Trump enumerated all 830 sphinx tilings of this triangle and found six symmetrical examples one of which is used to produce this sequence.
Hyper-packing is a term that describes the ability of a shape to contain a greater area of subshapes than its own area by overlapping the subshapes. There are 864 unit triangles in the order 1 hexagon. 30 of the subshapes hyper-packed into this hexagon would contain 30x6x6 or 1080 unit triangles if summed individually.
The prime numbers cannot be described by a formula. Subsets of the primes such as the balanced primes are more formula friendly (see comments to puzzle 920 below). - Craig Knecht, Apr 19 2018

Crossrefs

Programs

  • GAP
    List([1..30], n -> 6*n*(6*n-1)); # G. C. Greubel, Dec 04 2018
  • Magma
    [6*n*(6*n-1): n in [1..50]]; // Vincenzo Librandi, Sep 20 2017
    
  • Maple
    seq(6*n*(6*n-1),n=1..100); # Robert Israel, Sep 19 2017
  • Mathematica
    Array[6 # (6 # - 1) &, 42] (* Michael De Vlieger, Sep 19 2017 *)
    CoefficientList[Series[2(15 + 21 x)/(1-x)^3,{x, 0, 50}], x] (* Vincenzo Librandi, Sep 20 2017 *)
    CoefficientList[Series[6 E^x (5 + 17 x + 6 x^2), {x, 0, 50}], x]*
    Table[n!, {n, 0, 50}] (* Stefano Spezia, Dec 07 2018 *)
  • PARI
    a(n) = 6*n*(6*n-1); \\ Altug Alkan, Apr 08 2018
    
  • Sage
    [6*n*(6*n-1) for n in (1..50)] # G. C. Greubel, Dec 04 2018
    

Formula

a(n) = 6*n*(6*n-1). - Walter Trump
G.f.: 2*x*(15+21*x)/(1-x)^3. - Vincenzo Librandi, Sep 20 2017
a(n) = 6*A049452(n) = 6*n*A016969(n-1). - Torlach Rush, Nov 28 2018
E.g.f.: 6*exp(x)*(5 + 17*x + 6*x^2). - Stefano Spezia, Dec 07 2018
a(n) = A016970(n-1) + A016969(n-1). - Torlach Rush, Dec 10 2018
From Amiram Eldar, Jul 30 2024: (Start)
Sum_{n>=1} 1/a(n) = log(2)/3 + log(3)/4 - sqrt(3)*Pi/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 - log(2)/6 - arccoth(sqrt(3))/sqrt(3). (End)

A016978 a(n) = (6*n + 5)^10.

Original entry on oeis.org

9765625, 25937424601, 2015993900449, 41426511213649, 420707233300201, 2758547353515625, 13422659310152401, 52599132235830049, 174887470365513049, 511116753300641401, 1346274334462890625, 3255243551009881201, 7326680472586200649, 15516041187205853449
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A008454 (n^10).

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^10 = A016970(n)^5 = A016973(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(9, 5/6)/21941965946880. (End)
Showing 1-10 of 14 results. Next