A017077 a(n) = 8*n + 1.
1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273, 281, 289, 297, 305, 313, 321, 329, 337, 345, 353, 361, 369, 377, 385, 393, 401, 409, 417, 425, 433
Offset: 0
Examples
Illustration of initial terms: . o o o . o o o o o o . o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o . o o o o o o . o o o -------------------------------------------------------------- . 1 9 17 25 33 - _Bruno Berselli_, Feb 28 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Eric Weisstein's World of Mathematics, Antiprism Graph.
- Eric Weisstein's World of Mathematics, Clique.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Haskell
a017077 = (+ 1) . (* 8) a017077_list = [1, 9 ..] -- Reinhard Zumkeller, Dec 28 2012
-
Magma
I:=[1,9]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // Vincenzo Librandi, Mar 14 2014
-
Magma
[8*n+1 : n in [0..50]]; // Wesley Ivan Hurt, Jul 08 2014
-
Maple
A017077:=n->8*n+1: seq(A017077(n), n=0..50); # Wesley Ivan Hurt, Jul 08 2014
-
Mathematica
Table[8 n + 1, {n, 0, 6!}] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2010 *) CoefficientList[Series[(1 + 7 x)/(1 - x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Mar 14 2014 *) 8 Range[0, 50] + 1 (* Wesley Ivan Hurt, Jul 08 2014 *) LinearRecurrence[{2, -1}, {9, 17}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *)
-
PARI
a(n)=8*n+1 \\ Charles R Greathouse IV, Jul 10 2016
Formula
G.f.: (1+7*x)/(1-x)^2.
a(n+1) = A004768(n). - R. J. Mathar, May 28 2008
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Mar 14 2014
E.g.f.: exp(x)*(1 + 8*x). - Stefano Spezia, May 13 2021
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = a(n-1) + 8 with a(0)=1.
a(n) = A016813(2*n). (End)
Comments