A017113 a(n) = 8*n + 4.
4, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404, 412, 420, 428, 436, 444, 452, 460, 468
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000 (terms 0..1100 from Vincenzo Librandi)
- E. Catalan, Extrait d'une lettre, Bulletin de la S. M. F., tome 17 (1889), pp. 205-206. [If N is a prime number of the form 4*m+1, then 8*N+4 is the sum of four odd squares.]
- Cody Clifton, Commutativity in non-Abelian Groups, May 06 2010.
- Colin Defant and Noah Kravitz, Loops and Regions in Hitomezashi Patterns, arXiv:2201.03461 [math.CO], 2022. Theorem 1.2.
- Dr Barker, How to Avoid the Fibonacci Numbers, YouTube video, 2023.
- Meimei Gu and Rongxia Hao, 3-extra connectivity of 3-ary n-cube networks, arXiv:1309.5083 [cs.DM], Sep 19, 2013.
- Milan Janjic, Two Enumerative Functions.
- Tanya Khovanova, Recursive Sequences.
- William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Haskell
a017113 = (+ 4) . (* 8) a017113_list = [4, 12 ..] -- Reinhard Zumkeller, Jul 13 2013
-
Magma
[8*n+4: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011
-
Mathematica
LinearRecurrence[{2,-1}, {4,12}, 50] (* G. C. Greubel, Apr 26 2018 *)
-
PARI
a(n)=8*n+4 \\ Charles R Greathouse IV, Sep 23 2013
Formula
a(n) = A118413(n+1,3) for n > 2. - Reinhard Zumkeller, Apr 27 2006
a(n) = Sum_{k=0..4*n} (i^k+1)*(i^(4*n-k)+1), where i = sqrt(-1). - Bruno Berselli, Mar 19 2012
a(n) = 4*A005408(n). - Omar E. Pol, Apr 17 2016
E.g.f.: (8*x + 4)*exp(x). - G. C. Greubel, Apr 26 2018
G.f.: 4*(1+x)/(1-x)^2. - Wolfdieter Lang, Oct 27 2020
Sum_{n>=0} (-1)^n/a(n) = Pi/16 (A019683). - Amiram Eldar, Dec 11 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2) * sin(3*Pi/16).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2) * cos(3*Pi/16). (End)
Comments