cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017173 a(n) = 9*n + 1.

Original entry on oeis.org

1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, 460, 469, 478
Offset: 0

Views

Author

Keywords

Comments

Also all the numbers with digital root 1; A010888(a(n)) = 1. - Rick L. Shepherd, Jan 12 2009
A116371(a(n)) = A156144(a(n)); positions where records occur in A156144: A156145(n+1) = A156144(a(n)). - Reinhard Zumkeller, Feb 05 2009
If A=[A147296] 9*n^2+2*n (n>0, 11, 40, 87, ...); Y=[A010701] 3 (3, 3, 3, ...); X=[A017173] 9*n+1 (n>0, 10, 19, 28, ...), we have, for all terms, Pell's equation X^2 - A*Y^2 = 1. Example: 10^2 - 11*3^2 = 1; 19^2 - 40*3^2 = 1; 28^2 - 87*3^2 = 1. - Vincenzo Librandi, Aug 01 2010

Crossrefs

Cf. A093644 ((9,1) Pascal, column m=1).
Numbers with digital root m: this sequence (m=1), A017185 (m=2), A017197 (m=3), A017209 (m=4), A017221 (m=5), A017233 (m=6), A017245 (m=7), A017257 (m=8), A008591 (m=9).

Programs

Formula

G.f.: (1 + 8*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=10. - Vincenzo Librandi, Aug 01 2010
E.g.f.: exp(x)*(1 + 9*x). - Stefano Spezia, Apr 20 2023
a(n) = A016777(3*n). - Elmo R. Oliveira, Apr 12 2025