A017257 a(n) = 9*n + 8.
8, 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134, 143, 152, 161, 170, 179, 188, 197, 206, 215, 224, 233, 242, 251, 260, 269, 278, 287, 296, 305, 314, 323, 332, 341, 350, 359, 368, 377, 386, 395, 404, 413, 422, 431, 440, 449, 458, 467, 476, 485
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 970.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Haskell
a017257 = (+ 8) . (* 9) a017257_list = 8 : map (+ 9) a017257_list -- Reinhard Zumkeller, Jul 21 2013
-
Maple
A017257:=n->9*n+8; seq(A017257(n), n=0..100); # Wesley Ivan Hurt, Nov 30 2013
-
Mathematica
Array[9*#+8&,100,0] (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *)
-
PARI
a(n)=9*n+8 \\ Charles R Greathouse IV, Sep 28 2015
Formula
From Colin Barker, Jan 24 2012: (Start)
a(0)=8, a(1)=17, a(n) = 2*a(n-1)-a(n-2).
G.f.: (8+x)/(1-x)^2. (End)
E.g.f.: exp(x)*(8 + 9*x). - Stefano Spezia, Dec 08 2024
Comments