A017485 a(n) = 11*n + 8.
8, 19, 30, 41, 52, 63, 74, 85, 96, 107, 118, 129, 140, 151, 162, 173, 184, 195, 206, 217, 228, 239, 250, 261, 272, 283, 294, 305, 316, 327, 338, 349, 360, 371, 382, 393, 404, 415, 426, 437, 448, 459, 470, 481, 492, 503, 514, 525, 536, 547, 558, 569, 580, 591, 602, 613
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..60], n-> 11*n+8); # G. C. Greubel, Sep 21 2019
-
Magma
[11*n+8 : n in [0..60]]; // Wesley Ivan Hurt, May 21 2014
-
Maple
A017485:=n->11*n+8; seq(A017485(n), n=0..60); # Wesley Ivan Hurt, May 21 2014
-
Mathematica
Range[8, 1000, 11] (* Vladimir Joseph Stephan Orlovsky, May 29 2011 *) LinearRecurrence[{2,-1},{8,19},60] (* Harvey P. Dale, May 10 2021 *)
-
PARI
Vec((8+3*x)/(1-x)^2 + O(x^60)) \\ Colin Barker, Oct 05 2014
-
Sage
[11*n+8 for n in (0..60)] # G. C. Greubel, Sep 22 2019
Formula
a(n) = 22*n + 5 - a(n-1), with n>0, a(0)=8. - Vincenzo Librandi, Dec 24 2010
From Colin Barker, Oct 05 2014: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (8 + 3*x)/(1-x)^2. (End)
E.g.f.: (8 + 11*x)*exp(x). - G. C. Greubel, Sep 21 2019
Comments