A017509 a(n) = 11*n + 10.
10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 120, 131, 142, 153, 164, 175, 186, 197, 208, 219, 230, 241, 252, 263, 274, 285, 296, 307, 318, 329, 340, 351, 362, 373, 384, 395, 406, 417, 428, 439, 450, 461, 472, 483, 494, 505, 516, 527, 538, 549, 560, 571, 582
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Tanya Khovanova, Recursive Sequences
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 989
- Leo Tavares, Illustration: Triangular Lines
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..60], n-> (11*n+10)); # G. C. Greubel, Oct 29 2019
-
Magma
[11*n+10: n in [0..60]]; // Vincenzo Librandi, Sep 18 2011
-
Maple
seq((11*n+10), n=0..60); # G. C. Greubel, Oct 29 2019
-
Mathematica
Range[10, 1000, 11] (* Vladimir Joseph Stephan Orlovsky, May 29 2011 *) (11*Range[60] -1) (* G. C. Greubel, Oct 29 2019 *)
-
PARI
a(n)=11*n+10 \\ Charles R Greathouse IV, Jul 10 2016
-
Python
def a(n): return 11*n + 10 print([a(n) for n in range(53)]) # Michael S. Branicky, Oct 21 2021
-
Sage
[(11*n+10) for n in (0..60)] # G. C. Greubel, Oct 29 2019
Formula
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10 + x)/(1-x)^2.
E.g.f.: (10 + 11*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)
Comments