cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A017510 a(n) = (11*n + 10)^2.

Original entry on oeis.org

100, 441, 1024, 1849, 2916, 4225, 5776, 7569, 9604, 11881, 14400, 17161, 20164, 23409, 26896, 30625, 34596, 38809, 43264, 47961, 52900, 58081, 63504, 69169, 75076, 81225, 87616, 94249, 101124, 108241, 115600, 123201, 131044, 139129, 147456, 156025, 164836, 173889, 183184, 192721
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+10)^m: A017509 (m=1), this sequence (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).

Programs

Formula

From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (100 + 141*x + x^2)/(1-x)^3.
E.g.f.: (100 + 341*x + 121*x^2)*exp(x). (End)

A017511 a(n) = (11*n + 10)^3.

Original entry on oeis.org

1000, 9261, 32768, 79507, 157464, 274625, 438976, 658503, 941192, 1295029, 1728000, 2248091, 2863288, 3581577, 4410944, 5359375, 6434856, 7645373, 8998912, 10503459, 12167000, 13997521, 16003008, 18191447, 20570824, 23149125, 25934336, 28934443, 32157432
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), this sequence (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).

Programs

Formula

G.f.: (1000 + 5261*x + 1724*x^2 + x^3)/(1-x)^4. - Vincenzo Librandi, May 26 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3. - Vincenzo Librandi, May 26 2016
a(n) = A000578(A017509(n)). - Michel Marcus, May 26 2016
E.g.f.: (1000 + 8261*x + 7623*x^2 + 1331*x^3)*exp(x). - G. C. Greubel, Oct 29 2019

A017512 a(n) = (11*n + 10)^4.

Original entry on oeis.org

10000, 194481, 1048576, 3418801, 8503056, 17850625, 33362176, 57289761, 92236816, 141158161, 207360000, 294499921, 406586896, 547981281, 723394816, 937890625, 1196883216, 1506138481, 1871773696, 2300257521, 2798410000, 3373402561, 4032758016, 4784350561
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), this sequence (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).

Programs

  • GAP
    List([0..30], n-> (11*n+10)^4); # G. C. Greubel, Oct 29 2019
  • Magma
    [(11*n+10)^4: n in [0..30]]; // G. C. Greubel, Oct 29 2019
    
  • Maple
    A017512:=n->(11*n+10)^4: seq(A017512(n), n=0..30); # Wesley Ivan Hurt, Apr 11 2017
  • Mathematica
    (11*Range[0,30]+10)^4 (* or *) LinearRecurrence[{5,-10,10,-5,1}, {10000, 194481,1048576,3418801,8503056},30] (* Harvey P. Dale, Dec 24 2014 *)
  • PARI
    vector(31, n, (11*n-1)^4) \\ G. C. Greubel, Oct 29 2019
    
  • Sage
    [(11*n+10)^4 for n in (0..30)] # G. C. Greubel, Oct 29 2019
    

Formula

From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10000 + 144481*x + 176171*x^2 + 20731*x^3 + x^4)/(1-x)^5.
E.g.f.: (10000 + 184481*x + 334807*x^2 + 141086*x^3 + 14641*x^4)*exp(x). (End)

A017513 a(n) = (11*n + 10)^5.

Original entry on oeis.org

100000, 4084101, 33554432, 147008443, 459165024, 1160290625, 2535525376, 4984209207, 9039207968, 15386239549, 24883200000, 38579489651, 57735339232, 83841135993, 118636749824, 164130859375, 222620278176, 296709280757, 389328928768, 503756397099
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), this sequence (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).

Programs

Formula

From Chai Wah Wu, May 31 2016: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5.
G.f.: (x^5 + 248826*x^4 + 4943366*x^3 + 10549826*x^2 + 3484101*x + 100000)/(x - 1)^6. (End)
E.g.f.: (100000 + 3984101*x + 12743115*x^2 + 9749575*x^3 + 2342560*x^4 + 161051*x^5)*exp(x). - G. C. Greubel, Jun 01 2016

A017514 a(n) = (11*n + 10)^6.

Original entry on oeis.org

1000000, 85766121, 1073741824, 6321363049, 24794911296, 75418890625, 192699928576, 433626201009, 885842380864, 1677100110841, 2985984000000, 5053913144281, 8198418170944, 12827693806929, 19456426971136
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), this sequence (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+10)^6); # G. C. Greubel, Oct 29 2019
  • Magma
    [(11*n+10)^6: n in [0..20]]; // G. C. Greubel, Oct 29 2019
    
  • Maple
    seq((11*n+10)^6, n=0..20); # G. C. Greubel, Oct 29 2019
  • Mathematica
    (11*Range[0,20]+10)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1000000, 85766121,1073741824,6321363049,24794911296, 75418890625, 192699928576},20] (* Harvey P. Dale, Apr 21 2012 *)
  • Maxima
    makelist((11*n+10)^6,n,0,30); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(21, n, (11*n-1)^6) \\ G. C. Greubel, Oct 29 2019
    
  • Sage
    [(11*n+10)^6 for n in (0..20)] # G. C. Greubel, Oct 29 2019
    

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(0)=1000000, a(1)=85766121, a(2)=1073741824, a(3)=6321363049, a(4)=24794911296, a(5)=75418890625, a(6)=192699928576. - Harvey P. Dale, Apr 21 2012
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (1000000 + 78766121*x + 494378977*x^2 + 571258822*x^3 + 127134022*x^4 + 2985977*x^5 + x^6)/(1-x)^7.
E.g.f.: (1000000 + 84766121*x + 451604791*x^2 + 559405990*x^3 + 233743565*x^4 + 36236475*x^5 + 1771561*x^6)*exp(x). (End)

A017515 a(n) = (11*n + 10)^7.

Original entry on oeis.org

10000000, 1801088541, 34359738368, 271818611107, 1338925209984, 4902227890625, 14645194571776, 37725479487783, 86812553324672, 182803912081669, 358318080000000, 662062621900811, 1164175380274048
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), this sequence (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+10)^7); # G. C. Greubel, Oct 29 2019
  • Magma
    [(11*n+10)^7: n in [0..20]]; // G. C. Greubel, Oct 29 2019
    
  • Maple
    seq((11*n+10)^7, n=0..20); # G. C. Greubel, Oct 29 2019
  • Mathematica
    (11*Range[20] -1)^7 (* G. C. Greubel, Oct 29 2019 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{10000000,1801088541,34359738368,271818611107,1338925209984,4902227890625,14645194571776,37725479487783},20] (* Harvey P. Dale, Mar 24 2025 *)
  • PARI
    vector(21, n, (11*n-1)^7) \\ G. C. Greubel, Oct 29 2019
    
  • Sage
    [(11*n+10)^7 for n in (0..20)] # G. C. Greubel, Oct 29 2019
    

Formula

From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10000000 + 1721088541*x + 20231030040*x^2 + 46811183311*x^3 + 26288037136*x^4 + 3118171011*x^5 + 35831800*x^6 + x^7)/(1-x)^8.
E.g.f.: (10000000 + 1791088541*x + 15383780643*x^2 + 29022110271*x^3 + 18775618400*x^4 + 4926550090*x^5 + 533239861*x^6 + 19487171*x^7)*exp(x). (End)

A017516 a(n) = (11*n + 10)^8.

Original entry on oeis.org

100000000, 37822859361, 1099511627776, 11688200277601, 72301961339136, 318644812890625, 1113034787454976, 3282116715437121, 8507630225817856, 19925626416901921, 42998169600000000, 86730203469006241
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), this sequence (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+10)^8); # G. C. Greubel, Oct 29 2019
  • Magma
    [(11*n+10)^8: n in [0..20]]; // G. C. Greubel, Oct 29 2019
    
  • Maple
    seq((11*n+10)^8, n=0..20); # G. C. Greubel, Oct 29 2019
  • Mathematica
    (11*Range[0,20]+10)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84, 36,-9,1}, {100000000,37822859361,1099511627776,11688200277601, 72301961339136, 318644812890625,1113034787454976,3282116715437121, 8507630225817856}, 20] (* Harvey P. Dale, Mar 28 2015 *)
  • PARI
    vector(21, n, (11*n-1)^8) \\ G. C. Greubel, Oct 29 2019
    
  • Sage
    [(11*n+10)^8 for n in (0..20)] # G. C. Greubel, Oct 29 2019
    

Formula

a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Harvey P. Dale, Mar 28 2015
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (100000000 + 36922859361*x + 762705893527*x^2 + 3145818564613*x^3 + 3526057254339*x^4 + 1096474378339*x^5 + 74441150053*x^6 + 429981687*x^7 + x^8)/(1-x)^9.
E.g.f.: (100000000 + 37722859361*x + 511982954527*x^2 + 1417172328726*x^3 + 1333126606581*x^4 + 526757558250*x^5 + 94718280426*x^6 + 7561022348*x^7 + 214358881*x^8)*exp(x). (End)

A017517 a(n) = (11*n + 10)^9.

Original entry on oeis.org

1000000000, 794280046581, 35184372088832, 502592611936843, 3904305912313344, 20711912837890625, 84590643846578176, 285544154243029527, 833747762130149888, 2171893279442309389, 5159780352000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), this sequence (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+10)^9); # G. C. Greubel, Oct 29 2019
  • Magma
    [(11*n+10)^9: n in [0..20]]; // G. C. Greubel, Oct 29 2019
    
  • Maple
    seq((11*n+10)^9, n=0..20); # G. C. Greubel, Oct 29 2019
  • Mathematica
    (11*Range[20] -1)^9 (* G. C. Greubel, Oct 29 2019 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1000000000,794280046581,35184372088832,502592611936843,3904305912313344,20711912837890625,84590643846578176,285544154243029527,833747762130149888,2171893279442309389},20] (* Harvey P. Dale, Apr 02 2024 *)
  • Maxima
    makelist((11*n+10)^9,n,0,30); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(21, n, (11*n-1)^9) \\ G. C. Greubel, Oct 29 2019
    
  • Sage
    [(11*n+10)^9 for n in (0..20)] # G. C. Greubel, Oct 29 2019
    

Formula

From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (1000000000 + 784280046581*x + 27286571623022*x^2 + 186371493144668* x^3 + 366572931352634*x^4 + 229943411037290*x^5 + 42937656267554*x^6 + 1749554857988*x^7 + 5159780342*x^8 + x^9)/(1-x)^10.
E.g.f.: (1000000000 + 793280046581*x + 16798405997835*x^2 + 66570222635015* x^3 + 87577732371360*x^4 + 48903633958641*x^5 + 12992922453126*x^6 + 1699710028962*x^7 + 104178416166*x^8 + 2357947691*x^9)*exp(x). (End)

A017518 a(n) = (11*n + 10)^10.

Original entry on oeis.org

10000000000, 16679880978201, 1125899906842624, 21611482313284249, 210832519264920576, 1346274334462890625, 6428888932339941376, 24842341419143568849, 81707280688754689024, 236736367459211723401
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), this sequence (m=10), A017519 (m=11), A017520 (m=12).

Programs

Formula

From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10000000000 + 16569880978201*x + 942971216082413*x^2 + 10142326791816440*x^3 + 32281828333734992*x^4 + 35474405873171354*x^5 + 13610715373012154*x^6 + 1612091585741792*x^7 + 40745420207240*x^8 + 61917364213*x^9 + x^10)/(1-x)^11.
E.g.f.: (10000000000 + 16669880978201*x + 546275072443111*x^2 + 3047302039281830*x^3 + 5461469997038605*x^4 + 4142091263396625*x^5 + 1525402079982627*x^6 + 290796919504080*x^7 + 28906295102850*x^8 + 1402978876145*x^9 + 25937424601*x^10)*exp(x). (End)

A017519 a(n) = (11*n + 10)^11.

Original entry on oeis.org

100000000000, 350277500542221, 36028797018963968, 929293739471222707, 11384956040305711104, 87507831740087890625, 488595558857835544576, 2161283703465490489863, 8007313507497959524352, 25804264053054077850709
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), this sequence (m=11), A017520 (m=12).

Programs

Formula

From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (100000000000 + 349077500542221*x + 31832067012457316*x^2 + 520044490279441677*x^3 + 2534320219783371888*x^4 + 4468718880116382474* x^5 + 3020981097246519528*x^6 + 752734159745082834*x^7 + 58804165095530448*x^8 + 943893657465737*x^9 + 743008370676*x^10 + x^11)/(1-x)^12.
E.g.f.: (100000000000 + 350177500542221*x + 17664171008939763*x^2 + 137043013485992911*x^3 + 328439702272184800*x^4 + 329312102088205280*x^5 + 161493561976042527*x^6 + 42078754876663857*x^7 + 6031583034624180*x^8 + 470893943631155*x^9 + 18545258589715*x^10 + 285311670611*x^11)*exp(x). (End)
Showing 1-10 of 15 results. Next