cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017896 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19-x^20).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 18, 22, 27, 33, 40, 48, 57, 68, 79, 92, 107, 125, 147, 174, 207, 247, 295, 353, 420, 499, 591, 698, 823, 970, 1144, 1351, 1598, 1894, 2246, 2666, 3165, 3756, 4454, 5277, 6247, 7391, 8742, 10341, 12234
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Cf. A017887.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19-x^20))); // Vincenzo Librandi, Jul 01 2013
    
  • Maple
    a:= n-> (Matrix(20, (i, j)-> if (i=j-1) or (j=1 and i in [$10..20]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..80);  # Alois P. Heinz, Aug 04 2008
  • Mathematica
    CoefficientList[Series[1/(1 -Total[x^Range[10, 20]]), {x,0,80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1},{1,0,0,0,0,0,0,0, 0,0,1,1,1,1,1,1,1,1,1,1}, 81] (* Harvey P. Dale, Oct 21 2016 *)
  • SageMath
    def A017896_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^10+x^21) ).list()
    A017896_list(81) # G. C. Greubel, Nov 08 2024

Formula

a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17) +a(n-18) +a(n-19) +a(n-20), for n>19. - Vincenzo Librandi, Jul 01 2013