cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A018005 Smallest number whose cube has n digits.

Original entry on oeis.org

1, 3, 5, 10, 22, 47, 100, 216, 465, 1000, 2155, 4642, 10000, 21545, 46416, 100000, 215444, 464159, 1000000, 2154435, 4641589, 10000000, 21544347, 46415889, 100000000, 215443470, 464158884, 1000000000, 2154434691, 4641588834
Offset: 1

Views

Author

Keywords

Comments

With offset 0, ((cube root of 10) to the power n) rounded up.
From Carmine Suriano, Mar 14 2020: (Start)
The terms corresponding to n = (20,21); (38,39); (41,42); (56,57); (59,60); (77,78); (80,81) ... are such that the square of first term starts with the digits of second term, and the square of second term starts with the digits of the first. For example, a(38)^2 = 2154434690032^2 = 4641588833613.... and a(39)^2 = 4641588833613^2 = 2154434690032...
(End)

Examples

			a(5) = 22, 22^3 = 10648 has 5 digits, while 21^3 = 9261 has 4 digits.
		

Crossrefs

Cf. A061434, A061439, and powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), this sequence (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A017979 Powers of cube root of 2 rounded down.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50, 64, 80, 101, 128, 161, 203, 256, 322, 406, 512, 645, 812, 1024, 1290, 1625, 2048, 2580, 3250, 4096, 5160, 6501, 8192, 10321, 13003, 16384, 20642, 26007, 32768, 41285, 52015, 65536, 82570, 104031
Offset: 0

Views

Author

Keywords

Comments

Rounding has no effect when n is a multiple of 3, because then obviously (2^(1/3))^n = 2^(n/3). - Alonso del Arte, Jan 04 2014

Examples

			a(2) = 1 because the cube root of 2 squared is 1.5874...
a(3) = 2 because the cube root of 2 cubed is 2 exactly.
a(4) = 2 because the cube root of 2 to the fourth power is 2.519842...
		

Crossrefs

Sequences of the type: Powers of cube root of (k) rounded down: this sequence (k=2), A017982 (k=3), A017985 (k=4), A017988 (k=5), A017991 (k=6), A017994 (k=7), A018000 (k=9), A018003 (k=10), A018006 (k=11), A018009 (k=12), A018012 (k=13), A018015 (k=14), A018018 (k=15), A018021 (k=16), A018024 (k=17), A018027 (k=18), A018030 (k=19), A018033 (k=20), A018036 (k=21), A018039 (k=22), A018042 (k=23), A018045 (k=24).

Programs

  • Magma
    [Floor(2^(n/3)): n in [0..50]]; // Vincenzo Librandi, Jan 06 2014
    
  • Mathematica
    Table[Floor[(2^(1/3))^n], {n, 0, 49}] (* Alonso del Arte, Jan 04 2014 *)
  • Python
    from sympy import integer_nthroot
    def A017979(n): return integer_nthroot(1<Chai Wah Wu, Jun 18 2024

Extensions

a(44)-a(50) from Alex Ratushnyak, Jan 04 2014

A018026 Powers of cube root of 17 rounded up.

Original entry on oeis.org

1, 3, 7, 17, 44, 113, 289, 744, 1911, 4913, 12633, 32483, 83521, 214757, 552199, 1419857, 3650853, 9387369, 24137569, 62064487, 159585273, 410338673, 1055096276, 2712949631, 6975757441, 17936636689, 46120143717, 118587876497, 304922823712
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010589, A018024, A018025, and powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), this sequence (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

  • Magma
    [Ceiling(17^(n/3)): n in [0..40]]; // Vincenzo Librandi, Jan 10 2014
  • Maple
    Digits:= 1000:
    a:= n-> ceil(17^(n/3)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 23 2013
  • Mathematica
    Table[Ceiling[17^(n/3)], {n, 0, 40}] (* Vincenzo Librandi, Jan 10 2014 *)
  • PARI
    a(n) = if (n % 3, ceil((17^(1/3))^n), 17^(n/3)); \\ Michel Marcus, Nov 23 2013
    

A017984 Powers of cube root of 3 rounded up.

Original entry on oeis.org

1, 2, 3, 3, 5, 7, 9, 13, 19, 27, 39, 57, 81, 117, 169, 243, 351, 506, 729, 1052, 1517, 2187, 3155, 4550, 6561, 9463, 13648, 19683, 28388, 40943, 59049, 85164, 122827, 177147, 255491, 368481, 531441, 766471, 1105442, 1594323, 2299412, 3316326, 4782969, 6898235
Offset: 0

Views

Author

Keywords

Comments

Smallest integer such that a(n)^k-k^n is nonnegative for all nonnegative integers k. - Henry Bottomley, May 16 2005

Crossrefs

Cf. A107586 and powers of cube root of k ceiling up: A017981 (k=2), this sequence (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Vincenzo Librandi, Jan 09 2014

A017987 Powers of cube root of 4 rounded up.

Original entry on oeis.org

1, 2, 3, 4, 7, 11, 16, 26, 41, 64, 102, 162, 256, 407, 646, 1024, 1626, 2581, 4096, 6502, 10322, 16384, 26008, 41286, 65536, 104032, 165141, 262144, 416128, 660562, 1048576, 1664511, 2642246, 4194304, 6658043, 10568984, 16777216, 26632171, 42275936, 67108864
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), this sequence (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Vincenzo Librandi, Jan 09 2014

A017990 Powers of cube root of 5 rounded up.

Original entry on oeis.org

1, 2, 3, 5, 9, 15, 25, 43, 74, 125, 214, 366, 625, 1069, 1828, 3125, 5344, 9138, 15625, 26719, 45688, 78125, 133592, 228439, 390625, 667960, 1142195, 1953125, 3339797, 5710973, 9765625, 16698984, 28554861, 48828125, 83494920, 142774304, 244140625
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), this sequence (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Vincenzo Librandi, Jan 09 2014

A017993 Powers of cube root of 6 rounded up.

Original entry on oeis.org

1, 2, 4, 6, 11, 20, 36, 66, 119, 216, 393, 714, 1296, 2355, 4280, 7776, 14130, 25676, 46656, 84780, 154055, 279936, 508678, 924329, 1679616, 3052065, 5545970, 10077696, 18312389, 33275820, 60466176, 109874334, 199654915, 362797056, 659246002
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), this sequence (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Vincenzo Librandi, Jan 09 2014

A017996 Powers of cube root of 7 rounded up.

Original entry on oeis.org

1, 2, 4, 7, 14, 26, 49, 94, 180, 343, 657, 1256, 2401, 4593, 8786, 16807, 32151, 61502, 117649, 225055, 430514, 823543, 1575382, 3013596, 5764801, 11027668, 21095170, 40353607, 77193674, 147666185, 282475249, 540355713, 1033663292, 1977326743, 3782489986
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), this sequence (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Vincenzo Librandi, Jan 09 2014

A018002 Powers of cube root of 9 rounded up.

Original entry on oeis.org

1, 3, 5, 9, 19, 39, 81, 169, 351, 729, 1517, 3155, 6561, 13648, 28388, 59049, 122827, 255491, 531441, 1105442, 2299412, 4782969, 9948977, 20694705, 43046721, 89540788, 186252345, 387420489, 805867092, 1676271102, 3486784401, 7252803827, 15086439913, 31381059609
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), this sequence (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Vincenzo Librandi, Jan 09 2014

A018011 Powers of cube root of 12 rounded up.

Original entry on oeis.org

1, 3, 6, 12, 28, 63, 144, 330, 755, 1728, 3957, 9058, 20736, 47474, 108688, 248832, 569684, 1304249, 2985984, 6836197, 15650984, 35831808, 82034362, 187811805, 429981696, 984412343, 2253741659, 5159780352, 11812948115, 27044899908, 61917364224
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), this sequence (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Vincenzo Librandi, Jan 09 2014
Showing 1-10 of 25 results. Next