cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018913 a(n) = 9*a(n - 1) - a(n - 2) for n>1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 9, 80, 711, 6319, 56160, 499121, 4435929, 39424240, 350382231, 3114015839, 27675760320, 245967827041, 2186034683049, 19428344320400, 172669064200551, 1534593233484559, 13638670037160480, 121213437100959761
Offset: 0

Views

Author

Keywords

Comments

Define the sequence L(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}= 0. This is L(1,9).
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 9's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,8}. - Milan Janjic, Jan 25 2015
Not to be confused with the Pisot L(1,9) sequence, which is A001019. - R. J. Mathar, Feb 13 2016
Lim_{n->oo} a(n+1)/a(n) = (9 + sqrt(77))/2 = A092290 + 1 = 8.887482... - Wolfdieter Lang, Nov 16 2023

Examples

			G.f. = x + 9*x^2 + 80*x^3 + 711*x^4 + 6319*x^5 + 56160*x^6 + 499121*x^7 + ...
		

Crossrefs

Cf. A056918(n)=sqrt{77*(a(n))^2 +4}, that is, a(n)=sqrt((A056918(n)^2 - 4)/77).
Cf. A092290 + 1.

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 9*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 23 2012
    
  • Mathematica
    CoefficientList[Series[x/(1 - 9*x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *)
  • PARI
    concat(0, Vec(x/(1-9*x+x^2) + O(x^30))) \\ Michel Marcus, Sep 06 2017
  • Sage
    [lucas_number1(n,9,1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
    

Formula

G.f.: x/(1-9*x+x^2).
a(n) = S(2*n-1, sqrt(11))/sqrt(11) = S(n-1, 9); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0.
a(n) = (((9+sqrt(77))/2)^n - ((9-sqrt(77))/2)^n)/sqrt(77). - Barry E. Williams, Aug 21 2000
a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*8^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = 1/7*(7 + sqrt(77)).
Product {n >= 2} (1 - 1/a(n)) = 1/18*(7 + sqrt(77)). (End)
a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*7^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*11^k. - Peter Bala, Jul 17 2023
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(77)*x/2)/sqrt(77). - Stefano Spezia, Feb 23 2025
Product_{n >= 1} (a(2*n) + 1)/(a(2*n) - 1) = sqrt(11/7) [telescoping product: ((a(2*n) + 1)/(a(2*n) - 1))^2 = (11 - 4/(a(n+1) - a(n))^2)/(11 - 4/(a(n) - a(n-1))^2), leading to 11 - 7*Product_{k = 1..n} ((a(2*k) + 1)/(a(2*k) - 1))^2 = 4/A070998(n)^2]. - Peter Bala, May 18 2025

Extensions

G.f. adapted to the offset by Vincenzo Librandi, Dec 23 2012